ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xmettri Unicode version

Theorem xmettri 14540
Description: Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmettri  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A D B )  <_  ( ( A D C ) +e ( C D B ) ) )

Proof of Theorem xmettri
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  D  e.  ( *Met `  X ) )
2 simpr3 1007 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  C  e.  X )
3 simpr1 1005 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  A  e.  X )
4 simpr2 1006 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  ->  B  e.  X )
5 xmettri2 14529 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( C  e.  X  /\  A  e.  X  /\  B  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
61, 2, 3, 4, 5syl13anc 1251 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A D B )  <_  ( ( C D A ) +e ( C D B ) ) )
7 xmetsym 14536 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  C  e.  X  /\  A  e.  X
)  ->  ( C D A )  =  ( A D C ) )
81, 2, 3, 7syl3anc 1249 . . 3  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( C D A )  =  ( A D C ) )
98oveq1d 5933 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( ( C D A ) +e
( C D B ) )  =  ( ( A D C ) +e ( C D B ) ) )
106, 9breqtrd 4055 1  |-  ( ( D  e.  ( *Met `  X )  /\  ( A  e.  X  /\  B  e.  X  /\  C  e.  X ) )  -> 
( A D B )  <_  ( ( A D C ) +e ( C D B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918    <_ cle 8055   +ecxad 9836   *Metcxmet 14032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-apti 7987
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-xadd 9839  df-xmet 14040
This theorem is referenced by:  xmettri3  14542  xmetrtri  14544  xmeter  14604  xmstri  14640
  Copyright terms: Public domain W3C validator