ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 Unicode version

Theorem expnlbnd2 10631
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Distinct variable groups:    j, k, A    B, j, k

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10630 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  ( 1  / 
( B ^ j
) )  <  A
)
2 simpl2 1001 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR )
3 simpl3 1002 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <  B
)
4 1re 7947 . . . . . . . . . 10  |-  1  e.  RR
5 ltle 8035 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  1  <_  B )
)
64, 2, 5sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  < 
B  ->  1  <_  B ) )
73, 6mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <_  B
)
8 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
9 leexp2a 10559 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <_  B  /\  k  e.  ( ZZ>= `  j )
)  ->  ( B ^ j )  <_ 
( B ^ k
) )
102, 7, 8, 9syl3anc 1238 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  <_  ( B ^ k ) )
11 0red 7949 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  e.  RR )
12 1red 7963 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  e.  RR )
13 0lt1 8074 . . . . . . . . . . . 12  |-  0  <  1
1413a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  1
)
1511, 12, 2, 14, 3lttrd 8073 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  B
)
162, 15elrpd 9680 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR+ )
17 nnz 9261 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
1817ad2antrl 490 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  j  e.  ZZ )
19 rpexpcl 10525 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  j  e.  ZZ )  ->  ( B ^ j )  e.  RR+ )
2016, 18, 19syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  e.  RR+ )
21 eluzelz 9526 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
2221ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  ZZ )
23 rpexpcl 10525 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  k  e.  ZZ )  ->  ( B ^ k )  e.  RR+ )
2416, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
k )  e.  RR+ )
2520, 24lerecd 9703 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( B ^ j )  <_ 
( B ^ k
)  <->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) ) )
2610, 25mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) )
2724rprecred 9695 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  e.  RR )
2820rprecred 9695 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ j
) )  e.  RR )
29 simpl1 1000 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR+ )
3029rpred 9683 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR )
31 lelttr 8036 . . . . . . 7  |-  ( ( ( 1  /  ( B ^ k ) )  e.  RR  /\  (
1  /  ( B ^ j ) )  e.  RR  /\  A  e.  RR )  ->  (
( ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) )  /\  ( 1  / 
( B ^ j
) )  <  A
)  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3227, 28, 30, 31syl3anc 1238 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( 1  /  ( B ^ k ) )  <_  ( 1  / 
( B ^ j
) )  /\  (
1  /  ( B ^ j ) )  <  A )  -> 
( 1  /  ( B ^ k ) )  <  A ) )
3326, 32mpand 429 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3433anassrs 400 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3534ralrimdva 2557 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  ->  ( ( 1  / 
( B ^ j
) )  <  A  ->  A. k  e.  (
ZZ>= `  j ) ( 1  /  ( B ^ k ) )  <  A ) )
3635reximdva 2579 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. j  e.  NN  ( 1  /  ( B ^ j ) )  <  A  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A ) )
371, 36mpd 13 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801   0cc0 7802   1c1 7803    < clt 7982    <_ cle 7983    / cdiv 8618   NNcn 8908   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator