ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 Unicode version

Theorem expnlbnd2 10847
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Distinct variable groups:    j, k, A    B, j, k

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10846 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  ( 1  / 
( B ^ j
) )  <  A
)
2 simpl2 1004 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR )
3 simpl3 1005 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <  B
)
4 1re 8106 . . . . . . . . . 10  |-  1  e.  RR
5 ltle 8195 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  1  <_  B )
)
64, 2, 5sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  < 
B  ->  1  <_  B ) )
73, 6mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <_  B
)
8 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
9 leexp2a 10774 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <_  B  /\  k  e.  ( ZZ>= `  j )
)  ->  ( B ^ j )  <_ 
( B ^ k
) )
102, 7, 8, 9syl3anc 1250 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  <_  ( B ^ k ) )
11 0red 8108 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  e.  RR )
12 1red 8122 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  e.  RR )
13 0lt1 8234 . . . . . . . . . . . 12  |-  0  <  1
1413a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  1
)
1511, 12, 2, 14, 3lttrd 8233 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  B
)
162, 15elrpd 9850 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR+ )
17 nnz 9426 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
1817ad2antrl 490 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  j  e.  ZZ )
19 rpexpcl 10740 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  j  e.  ZZ )  ->  ( B ^ j )  e.  RR+ )
2016, 18, 19syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  e.  RR+ )
21 eluzelz 9692 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
2221ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  ZZ )
23 rpexpcl 10740 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  k  e.  ZZ )  ->  ( B ^ k )  e.  RR+ )
2416, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
k )  e.  RR+ )
2520, 24lerecd 9873 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( B ^ j )  <_ 
( B ^ k
)  <->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) ) )
2610, 25mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) )
2724rprecred 9865 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  e.  RR )
2820rprecred 9865 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ j
) )  e.  RR )
29 simpl1 1003 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR+ )
3029rpred 9853 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR )
31 lelttr 8196 . . . . . . 7  |-  ( ( ( 1  /  ( B ^ k ) )  e.  RR  /\  (
1  /  ( B ^ j ) )  e.  RR  /\  A  e.  RR )  ->  (
( ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) )  /\  ( 1  / 
( B ^ j
) )  <  A
)  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3227, 28, 30, 31syl3anc 1250 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( 1  /  ( B ^ k ) )  <_  ( 1  / 
( B ^ j
) )  /\  (
1  /  ( B ^ j ) )  <  A )  -> 
( 1  /  ( B ^ k ) )  <  A ) )
3326, 32mpand 429 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3433anassrs 400 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3534ralrimdva 2588 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  ->  ( ( 1  / 
( B ^ j
) )  <  A  ->  A. k  e.  (
ZZ>= `  j ) ( 1  /  ( B ^ k ) )  <  A ) )
3635reximdva 2610 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. j  e.  NN  ( 1  /  ( B ^ j ) )  <  A  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A ) )
371, 36mpd 13 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   0cc0 7960   1c1 7961    < clt 8142    <_ cle 8143    / cdiv 8780   NNcn 9071   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator