ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expnlbnd2 Unicode version

Theorem expnlbnd2 10810
Description: The reciprocal of exponentiation with a base greater than 1 has no positive lower bound. (Contributed by NM, 18-Jul-2008.) (Proof shortened by Mario Carneiro, 5-Jun-2014.)
Assertion
Ref Expression
expnlbnd2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Distinct variable groups:    j, k, A    B, j, k

Proof of Theorem expnlbnd2
StepHypRef Expression
1 expnlbnd 10809 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  ( 1  / 
( B ^ j
) )  <  A
)
2 simpl2 1004 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR )
3 simpl3 1005 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <  B
)
4 1re 8071 . . . . . . . . . 10  |-  1  e.  RR
5 ltle 8160 . . . . . . . . . 10  |-  ( ( 1  e.  RR  /\  B  e.  RR )  ->  ( 1  <  B  ->  1  <_  B )
)
64, 2, 5sylancr 414 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  < 
B  ->  1  <_  B ) )
73, 6mpd 13 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  <_  B
)
8 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  (
ZZ>= `  j ) )
9 leexp2a 10737 . . . . . . . 8  |-  ( ( B  e.  RR  /\  1  <_  B  /\  k  e.  ( ZZ>= `  j )
)  ->  ( B ^ j )  <_ 
( B ^ k
) )
102, 7, 8, 9syl3anc 1250 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  <_  ( B ^ k ) )
11 0red 8073 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  e.  RR )
12 1red 8087 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  1  e.  RR )
13 0lt1 8199 . . . . . . . . . . . 12  |-  0  <  1
1413a1i 9 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  1
)
1511, 12, 2, 14, 3lttrd 8198 . . . . . . . . . 10  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  0  <  B
)
162, 15elrpd 9815 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  B  e.  RR+ )
17 nnz 9391 . . . . . . . . . 10  |-  ( j  e.  NN  ->  j  e.  ZZ )
1817ad2antrl 490 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  j  e.  ZZ )
19 rpexpcl 10703 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  j  e.  ZZ )  ->  ( B ^ j )  e.  RR+ )
2016, 18, 19syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
j )  e.  RR+ )
21 eluzelz 9657 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
2221ad2antll 491 . . . . . . . . 9  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  k  e.  ZZ )
23 rpexpcl 10703 . . . . . . . . 9  |-  ( ( B  e.  RR+  /\  k  e.  ZZ )  ->  ( B ^ k )  e.  RR+ )
2416, 22, 23syl2anc 411 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( B ^
k )  e.  RR+ )
2520, 24lerecd 9838 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( B ^ j )  <_ 
( B ^ k
)  <->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) ) )
2610, 25mpbid 147 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) ) )
2724rprecred 9830 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ k
) )  e.  RR )
2820rprecred 9830 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( 1  / 
( B ^ j
) )  e.  RR )
29 simpl1 1003 . . . . . . . 8  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR+ )
3029rpred 9818 . . . . . . 7  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  A  e.  RR )
31 lelttr 8161 . . . . . . 7  |-  ( ( ( 1  /  ( B ^ k ) )  e.  RR  /\  (
1  /  ( B ^ j ) )  e.  RR  /\  A  e.  RR )  ->  (
( ( 1  / 
( B ^ k
) )  <_  (
1  /  ( B ^ j ) )  /\  ( 1  / 
( B ^ j
) )  <  A
)  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3227, 28, 30, 31syl3anc 1250 . . . . . 6  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( 1  /  ( B ^ k ) )  <_  ( 1  / 
( B ^ j
) )  /\  (
1  /  ( B ^ j ) )  <  A )  -> 
( 1  /  ( B ^ k ) )  <  A ) )
3326, 32mpand 429 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3433anassrs 400 . . . 4  |-  ( ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( 1  /  ( B ^
j ) )  < 
A  ->  ( 1  /  ( B ^
k ) )  < 
A ) )
3534ralrimdva 2586 . . 3  |-  ( ( ( A  e.  RR+  /\  B  e.  RR  /\  1  <  B )  /\  j  e.  NN )  ->  ( ( 1  / 
( B ^ j
) )  <  A  ->  A. k  e.  (
ZZ>= `  j ) ( 1  /  ( B ^ k ) )  <  A ) )
3635reximdva 2608 . 2  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  ( E. j  e.  NN  ( 1  /  ( B ^ j ) )  <  A  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A ) )
371, 36mpd 13 1  |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  1  < 
B )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( 1  /  ( B ^ k ) )  <  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    e. wcel 2176   A.wral 2484   E.wrex 2485   class class class wbr 4044   ` cfv 5271  (class class class)co 5944   RRcr 7924   0cc0 7925   1c1 7926    < clt 8107    <_ cle 8108    / cdiv 8745   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648   RR+crp 9775   ^cexp 10683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-rp 9776  df-seqfrec 10593  df-exp 10684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator