ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zltp1le Unicode version

Theorem zltp1le 9374
Description: Integer ordering relation. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
zltp1le  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )

Proof of Theorem zltp1le
StepHypRef Expression
1 nnge1 9007 . . . 4  |-  ( ( N  -  M )  e.  NN  ->  1  <_  ( N  -  M
) )
21a1i 9 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( N  -  M )  e.  NN  ->  1  <_  ( N  -  M ) ) )
3 znnsub 9371 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( N  -  M )  e.  NN ) )
4 zre 9324 . . . 4  |-  ( M  e.  ZZ  ->  M  e.  RR )
5 zre 9324 . . . 4  |-  ( N  e.  ZZ  ->  N  e.  RR )
6 1re 8020 . . . . 5  |-  1  e.  RR
7 leaddsub2 8460 . . . . 5  |-  ( ( M  e.  RR  /\  1  e.  RR  /\  N  e.  RR )  ->  (
( M  +  1 )  <_  N  <->  1  <_  ( N  -  M ) ) )
86, 7mp3an2 1336 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( ( M  + 
1 )  <_  N  <->  1  <_  ( N  -  M ) ) )
94, 5, 8syl2an 289 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )  <_  N  <->  1  <_  ( N  -  M ) ) )
102, 3, 93imtr4d 203 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  ->  ( M  +  1 )  <_  N )
)
114adantr 276 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  RR )
1211ltp1d 8951 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  M  <  ( M  +  1 ) )
13 peano2re 8157 . . . . 5  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
1411, 13syl 14 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  +  1 )  e.  RR )
155adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  RR )
16 ltletr 8111 . . . 4  |-  ( ( M  e.  RR  /\  ( M  +  1
)  e.  RR  /\  N  e.  RR )  ->  ( ( M  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  M  <  N ) )
1711, 14, 15, 16syl3anc 1249 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  < 
( M  +  1 )  /\  ( M  +  1 )  <_  N )  ->  M  <  N ) )
1812, 17mpand 429 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  + 
1 )  <_  N  ->  M  <  N ) )
1910, 18impbid 129 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  <  N  <->  ( M  +  1 )  <_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164   class class class wbr 4030  (class class class)co 5919   RRcr 7873   1c1 7875    + caddc 7877    < clt 8056    <_ cle 8057    - cmin 8192   NNcn 8984   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321
This theorem is referenced by:  zleltp1  9375  zlem1lt  9376  zgt0ge1  9378  nnltp1le  9380  nn0ltp1le  9382  btwnnz  9414  uzind2  9432  fzind  9435  btwnapz  9450  eluzp1l  9620  eluz2b1  9669  zltaddlt1le  10076  fzsplit2  10119  m1modge3gt1  10445  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586  bcval5  10837  seq3coll  10916  cvgratnnlemseq  11672  nn0o1gt2  12049  divalglemnqt  12064  zsupcllemstep  12085  infssuzex  12089  suprzubdc  12092  isprm3  12259  dvdsnprmd  12266  prmgt1  12273  oddprmge3  12276  znege1  12319  hashdvds  12362  lgsdilem2  15193  lgsquadlem1  15234  2lgslem1a  15245
  Copyright terms: Public domain W3C validator