ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtndiv Unicode version

Theorem gtndiv 9438
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 9014 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR )
213ad2ant2 1021 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  e.  RR )
3 simp1 999 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  A  e.  RR )
4 nngt0 9032 . . . 4  |-  ( B  e.  NN  ->  0  <  B )
543ad2ant2 1021 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  B )
64adantl 277 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  0  <  B )
7 0re 8043 . . . . . . . 8  |-  0  e.  RR
8 lttr 8117 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  B  /\  B  <  A )  ->  0  <  A
) )
97, 8mp3an1 1335 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
101, 9sylan 283 . . . . . 6  |-  ( ( B  e.  NN  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
1110ancoms 268 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
126, 11mpand 429 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( B  <  A  ->  0  <  A ) )
13123impia 1202 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  A )
142, 3, 5, 13divgt0d 8979 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  ( B  /  A
) )
15 simp3 1001 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  <  A )
16 1re 8042 . . . . . . 7  |-  1  e.  RR
17 ltdivmul2 8922 . . . . . . 7  |-  ( ( B  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
1816, 17mp3an2 1336 . . . . . 6  |-  ( ( B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
192, 3, 13, 18syl12anc 1247 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  ( 1  x.  A ) ) )
20 recn 8029 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
2120mulid2d 8062 . . . . . . 7  |-  ( A  e.  RR  ->  (
1  x.  A )  =  A )
2221breq2d 4046 . . . . . 6  |-  ( A  e.  RR  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
23223ad2ant1 1020 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
2419, 23bitrd 188 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  A ) )
2515, 24mpbird 167 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  <  1 )
26 0p1e1 9121 . . 3  |-  ( 0  +  1 )  =  1
2725, 26breqtrrdi 4076 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  < 
( 0  +  1 ) )
28 0z 9354 . . 3  |-  0  e.  ZZ
29 btwnnz 9437 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( B  /  A )  /\  ( B  /  A )  < 
( 0  +  1 ) )  ->  -.  ( B  /  A
)  e.  ZZ )
3028, 29mp3an1 1335 . 2  |-  ( ( 0  <  ( B  /  A )  /\  ( B  /  A
)  <  ( 0  +  1 ) )  ->  -.  ( B  /  A )  e.  ZZ )
3114, 27, 30syl2anc 411 1  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    e. wcel 2167   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896   1c1 7897    + caddc 7899    x. cmul 7901    < clt 8078    / cdiv 8716   NNcn 9007   ZZcz 9343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344
This theorem is referenced by:  prime  9442
  Copyright terms: Public domain W3C validator