ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtndiv Unicode version

Theorem gtndiv 8811
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 8401 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR )
213ad2ant2 965 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  e.  RR )
3 simp1 943 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  A  e.  RR )
4 nngt0 8419 . . . 4  |-  ( B  e.  NN  ->  0  <  B )
543ad2ant2 965 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  B )
64adantl 271 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  0  <  B )
7 0re 7467 . . . . . . . 8  |-  0  e.  RR
8 lttr 7538 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  B  /\  B  <  A )  ->  0  <  A
) )
97, 8mp3an1 1260 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
101, 9sylan 277 . . . . . 6  |-  ( ( B  e.  NN  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
1110ancoms 264 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
126, 11mpand 420 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( B  <  A  ->  0  <  A ) )
13123impia 1140 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  A )
142, 3, 5, 13divgt0d 8368 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  ( B  /  A
) )
15 simp3 945 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  <  A )
16 1re 7466 . . . . . . 7  |-  1  e.  RR
17 ltdivmul2 8311 . . . . . . 7  |-  ( ( B  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
1816, 17mp3an2 1261 . . . . . 6  |-  ( ( B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
192, 3, 13, 18syl12anc 1172 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  ( 1  x.  A ) ) )
20 recn 7454 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
2120mulid2d 7485 . . . . . . 7  |-  ( A  e.  RR  ->  (
1  x.  A )  =  A )
2221breq2d 3849 . . . . . 6  |-  ( A  e.  RR  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
23223ad2ant1 964 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
2419, 23bitrd 186 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  A ) )
2515, 24mpbird 165 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  <  1 )
26 0p1e1 8507 . . 3  |-  ( 0  +  1 )  =  1
2725, 26syl6breqr 3877 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  < 
( 0  +  1 ) )
28 0z 8731 . . 3  |-  0  e.  ZZ
29 btwnnz 8810 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( B  /  A )  /\  ( B  /  A )  < 
( 0  +  1 ) )  ->  -.  ( B  /  A
)  e.  ZZ )
3028, 29mp3an1 1260 . 2  |-  ( ( 0  <  ( B  /  A )  /\  ( B  /  A
)  <  ( 0  +  1 ) )  ->  -.  ( B  /  A )  e.  ZZ )
3114, 27, 30syl2anc 403 1  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    e. wcel 1438   class class class wbr 3837  (class class class)co 5634   RRcr 7328   0cc0 7329   1c1 7330    + caddc 7332    x. cmul 7334    < clt 7501    / cdiv 8113   NNcn 8394   ZZcz 8720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-iota 4967  df-fun 5004  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721
This theorem is referenced by:  prime  8815
  Copyright terms: Public domain W3C validator