ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtndiv Unicode version

Theorem gtndiv 9348
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 8926 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR )
213ad2ant2 1019 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  e.  RR )
3 simp1 997 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  A  e.  RR )
4 nngt0 8944 . . . 4  |-  ( B  e.  NN  ->  0  <  B )
543ad2ant2 1019 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  B )
64adantl 277 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  0  <  B )
7 0re 7957 . . . . . . . 8  |-  0  e.  RR
8 lttr 8031 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  B  /\  B  <  A )  ->  0  <  A
) )
97, 8mp3an1 1324 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
101, 9sylan 283 . . . . . 6  |-  ( ( B  e.  NN  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
1110ancoms 268 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
126, 11mpand 429 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( B  <  A  ->  0  <  A ) )
13123impia 1200 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  A )
142, 3, 5, 13divgt0d 8892 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  ( B  /  A
) )
15 simp3 999 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  <  A )
16 1re 7956 . . . . . . 7  |-  1  e.  RR
17 ltdivmul2 8835 . . . . . . 7  |-  ( ( B  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
1816, 17mp3an2 1325 . . . . . 6  |-  ( ( B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
192, 3, 13, 18syl12anc 1236 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  ( 1  x.  A ) ) )
20 recn 7944 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
2120mulid2d 7976 . . . . . . 7  |-  ( A  e.  RR  ->  (
1  x.  A )  =  A )
2221breq2d 4016 . . . . . 6  |-  ( A  e.  RR  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
23223ad2ant1 1018 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
2419, 23bitrd 188 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  A ) )
2515, 24mpbird 167 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  <  1 )
26 0p1e1 9033 . . 3  |-  ( 0  +  1 )  =  1
2725, 26breqtrrdi 4046 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  < 
( 0  +  1 ) )
28 0z 9264 . . 3  |-  0  e.  ZZ
29 btwnnz 9347 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( B  /  A )  /\  ( B  /  A )  < 
( 0  +  1 ) )  ->  -.  ( B  /  A
)  e.  ZZ )
3028, 29mp3an1 1324 . 2  |-  ( ( 0  <  ( B  /  A )  /\  ( B  /  A
)  <  ( 0  +  1 ) )  ->  -.  ( B  /  A )  e.  ZZ )
3114, 27, 30syl2anc 411 1  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2148   class class class wbr 4004  (class class class)co 5875   RRcr 7810   0cc0 7811   1c1 7812    + caddc 7814    x. cmul 7816    < clt 7992    / cdiv 8629   NNcn 8919   ZZcz 9253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-mulrcl 7910  ax-addcom 7911  ax-mulcom 7912  ax-addass 7913  ax-mulass 7914  ax-distr 7915  ax-i2m1 7916  ax-0lt1 7917  ax-1rid 7918  ax-0id 7919  ax-rnegex 7920  ax-precex 7921  ax-cnre 7922  ax-pre-ltirr 7923  ax-pre-ltwlin 7924  ax-pre-lttrn 7925  ax-pre-apti 7926  ax-pre-ltadd 7927  ax-pre-mulgt0 7928  ax-pre-mulext 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-opab 4066  df-id 4294  df-po 4297  df-iso 4298  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-iota 5179  df-fun 5219  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-pnf 7994  df-mnf 7995  df-xr 7996  df-ltxr 7997  df-le 7998  df-sub 8130  df-neg 8131  df-reap 8532  df-ap 8539  df-div 8630  df-inn 8920  df-n0 9177  df-z 9254
This theorem is referenced by:  prime  9352
  Copyright terms: Public domain W3C validator