ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gtndiv Unicode version

Theorem gtndiv 9238
Description: A larger number does not divide a smaller positive integer. (Contributed by NM, 3-May-2005.)
Assertion
Ref Expression
gtndiv  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )

Proof of Theorem gtndiv
StepHypRef Expression
1 nnre 8819 . . . 4  |-  ( B  e.  NN  ->  B  e.  RR )
213ad2ant2 1004 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  e.  RR )
3 simp1 982 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  A  e.  RR )
4 nngt0 8837 . . . 4  |-  ( B  e.  NN  ->  0  <  B )
543ad2ant2 1004 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  B )
64adantl 275 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  0  <  B )
7 0re 7857 . . . . . . . 8  |-  0  e.  RR
8 lttr 7930 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  B  e.  RR  /\  A  e.  RR )  ->  (
( 0  <  B  /\  B  <  A )  ->  0  <  A
) )
97, 8mp3an1 1303 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
101, 9sylan 281 . . . . . 6  |-  ( ( B  e.  NN  /\  A  e.  RR )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
1110ancoms 266 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( ( 0  < 
B  /\  B  <  A )  ->  0  <  A ) )
126, 11mpand 426 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN )  ->  ( B  <  A  ->  0  <  A ) )
13123impia 1179 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  A )
142, 3, 5, 13divgt0d 8785 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  0  <  ( B  /  A
) )
15 simp3 984 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  B  <  A )
16 1re 7856 . . . . . . 7  |-  1  e.  RR
17 ltdivmul2 8728 . . . . . . 7  |-  ( ( B  e.  RR  /\  1  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
1816, 17mp3an2 1304 . . . . . 6  |-  ( ( B  e.  RR  /\  ( A  e.  RR  /\  0  <  A ) )  ->  ( ( B  /  A )  <  1  <->  B  <  ( 1  x.  A ) ) )
192, 3, 13, 18syl12anc 1215 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  ( 1  x.  A ) ) )
20 recn 7844 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  CC )
2120mulid2d 7875 . . . . . . 7  |-  ( A  e.  RR  ->  (
1  x.  A )  =  A )
2221breq2d 3973 . . . . . 6  |-  ( A  e.  RR  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
23223ad2ant1 1003 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  <  ( 1  x.  A )  <->  B  <  A ) )
2419, 23bitrd 187 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  (
( B  /  A
)  <  1  <->  B  <  A ) )
2515, 24mpbird 166 . . 3  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  <  1 )
26 0p1e1 8926 . . 3  |-  ( 0  +  1 )  =  1
2725, 26breqtrrdi 4002 . 2  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  ( B  /  A )  < 
( 0  +  1 ) )
28 0z 9157 . . 3  |-  0  e.  ZZ
29 btwnnz 9237 . . 3  |-  ( ( 0  e.  ZZ  /\  0  <  ( B  /  A )  /\  ( B  /  A )  < 
( 0  +  1 ) )  ->  -.  ( B  /  A
)  e.  ZZ )
3028, 29mp3an1 1303 . 2  |-  ( ( 0  <  ( B  /  A )  /\  ( B  /  A
)  <  ( 0  +  1 ) )  ->  -.  ( B  /  A )  e.  ZZ )
3114, 27, 30syl2anc 409 1  |-  ( ( A  e.  RR  /\  B  e.  NN  /\  B  <  A )  ->  -.  ( B  /  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    e. wcel 2125   class class class wbr 3961  (class class class)co 5814   RRcr 7710   0cc0 7711   1c1 7712    + caddc 7714    x. cmul 7716    < clt 7891    / cdiv 8524   NNcn 8812   ZZcz 9146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-n0 9070  df-z 9147
This theorem is referenced by:  prime  9242
  Copyright terms: Public domain W3C validator