ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsqz Unicode version

Theorem climsqz 11761
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climsqz.5  |-  ( ph  ->  G  e.  W )
climsqz.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climsqz.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
climsqz.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
climsqz.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  A )
Assertion
Ref Expression
climsqz  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    k, F    ph, k    A, k    k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climsqz
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  ZZ )
4 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5 eqidd 2208 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
6 climadd.4 . . . . . 6  |-  ( ph  ->  F  ~~>  A )
76adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  F  ~~>  A )
81, 3, 4, 5, 7climi2 11714 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x )
91uztrn2 9701 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
10 climsqz.6 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
11 climsqz.7 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
121, 2, 6, 10climrecl 11750 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
1312adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
14 climsqz.8 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
1510, 11, 13, 14lesub2dd 8670 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  -  ( G `  k ) )  <_ 
( A  -  ( F `  k )
) )
16 climsqz.9 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  A )
1711, 13, 16abssuble0d 11603 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  =  ( A  -  ( G `  k )
) )
1810, 11, 13, 14, 16letrd 8231 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  A )
1910, 13, 18abssuble0d 11603 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( A  -  ( F `  k )
) )
2015, 17, 193brtr4d 4091 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2120adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2211adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
2312ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  A  e.  RR )
2422, 23resubcld 8488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  RR )
2524recnd 8136 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  CC )
2625abscld 11607 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  e.  RR )
2710adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2827, 23resubcld 8488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  RR )
2928recnd 8136 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  CC )
3029abscld 11607 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  e.  RR )
31 rpre 9817 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
3231ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  x  e.  RR )
33 lelttr 8196 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  A ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3426, 30, 32, 33syl3anc 1250 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3521, 34mpand 429 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  x  -> 
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
369, 35sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3837ralimdva 2575 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  A ) )  <  x  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3938reximdva 2610 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  x ) )
408, 39mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x )
4140ralrimiva 2581 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  x
)
42 climsqz.5 . . 3  |-  ( ph  ->  G  e.  W )
43 eqidd 2208 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
4412recnd 8136 . . 3  |-  ( ph  ->  A  e.  CC )
4511recnd 8136 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
461, 2, 42, 43, 44, 45clim2c 11710 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
4741, 46mpbird 167 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959    < clt 8142    <_ cle 8143    - cmin 8278   ZZcz 9407   ZZ>=cuz 9683   RR+crp 9810   abscabs 11423    ~~> cli 11704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-rp 9811  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator