ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsqz Unicode version

Theorem climsqz 11841
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climsqz.5  |-  ( ph  ->  G  e.  W )
climsqz.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climsqz.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
climsqz.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
climsqz.9  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  A )
Assertion
Ref Expression
climsqz  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    k, F    ph, k    A, k    k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climsqz
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  ZZ )
4 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5 eqidd 2230 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
6 climadd.4 . . . . . 6  |-  ( ph  ->  F  ~~>  A )
76adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  F  ~~>  A )
81, 3, 4, 5, 7climi2 11794 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x )
91uztrn2 9736 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
10 climsqz.6 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
11 climsqz.7 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
121, 2, 6, 10climrecl 11830 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
1312adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
14 climsqz.8 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  ( G `  k
) )
1510, 11, 13, 14lesub2dd 8705 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( A  -  ( G `  k ) )  <_ 
( A  -  ( F `  k )
) )
16 climsqz.9 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  A )
1711, 13, 16abssuble0d 11683 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  =  ( A  -  ( G `  k )
) )
1810, 11, 13, 14, 16letrd 8266 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  <_  A )
1910, 13, 18abssuble0d 11683 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( A  -  ( F `  k )
) )
2015, 17, 193brtr4d 4114 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2120adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2211adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
2312ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  A  e.  RR )
2422, 23resubcld 8523 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  RR )
2524recnd 8171 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  CC )
2625abscld 11687 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  e.  RR )
2710adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2827, 23resubcld 8523 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  RR )
2928recnd 8171 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  CC )
3029abscld 11687 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  e.  RR )
31 rpre 9852 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
3231ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  x  e.  RR )
33 lelttr 8231 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  A ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3426, 30, 32, 33syl3anc 1271 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3521, 34mpand 429 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  x  -> 
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
369, 35sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3837ralimdva 2597 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  A ) )  <  x  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3938reximdva 2632 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  x ) )
408, 39mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x )
4140ralrimiva 2603 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  x
)
42 climsqz.5 . . 3  |-  ( ph  ->  G  e.  W )
43 eqidd 2230 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
4412recnd 8171 . . 3  |-  ( ph  ->  A  e.  CC )
4511recnd 8171 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
461, 2, 42, 43, 44, 45clim2c 11790 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
4741, 46mpbird 167 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   class class class wbr 4082   ` cfv 5317  (class class class)co 6000   RRcr 7994    < clt 8177    <_ cle 8178    - cmin 8313   ZZcz 9442   ZZ>=cuz 9718   RR+crp 9845   abscabs 11503    ~~> cli 11784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-rp 9846  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator