ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2r Unicode version

Theorem leexp2r 10530
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )

Proof of Theorem leexp2r
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . . . . 8  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
21breq1d 3999 . . . . . . 7  |-  ( j  =  M  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ M )  <_  ( A ^ M ) ) )
32imbi2d 229 . . . . . 6  |-  ( j  =  M  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) ) )
4 oveq2 5861 . . . . . . . 8  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
54breq1d 3999 . . . . . . 7  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ k )  <_ 
( A ^ M
) ) )
65imbi2d 229 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) ) ) )
7 oveq2 5861 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
87breq1d 3999 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
98imbi2d 229 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
( k  +  1 ) )  <_  ( A ^ M ) ) ) )
10 oveq2 5861 . . . . . . . 8  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1110breq1d 3999 . . . . . . 7  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ N )  <_  ( A ^ M ) ) )
1211imbi2d 229 . . . . . 6  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
13 reexpcl 10493 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  RR )
1413adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  e.  RR )
1514leidd 8433 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) )
1615a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) )
17 simprll 532 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  RR )
18 1red 7935 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  1  e.  RR )
19 simprlr 533 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  M  e.  NN0 )
20 simpl 108 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
21 eluznn0 9558 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
2219, 20, 21syl2anc 409 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  NN0 )
23 reexpcl 10493 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
2417, 22, 23syl2anc 409 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  RR )
25 simprrl 534 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  A )
26 expge0 10512 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
2717, 22, 25, 26syl3anc 1233 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  ( A ^ k
) )
28 simprrr 535 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  <_  1 )
2917, 18, 24, 27, 28lemul2ad 8856 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  A )  <_  ( ( A ^ k )  x.  1 ) )
3017recnd 7948 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  CC )
31 expp1 10483 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3230, 22, 31syl2anc 409 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3324recnd 7948 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  CC )
3433mulid1d 7937 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  1 )  =  ( A ^
k ) )
3534eqcomd 2176 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  =  ( ( A ^
k )  x.  1 ) )
3629, 32, 353brtr4d 4021 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ k
) )
37 peano2nn0 9175 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3822, 37syl 14 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
k  +  1 )  e.  NN0 )
39 reexpcl 10493 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  RR )
4017, 38, 39syl2anc 409 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  RR )
4113ad2antrl 487 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ M )  e.  RR )
42 letr 8002 . . . . . . . . . 10  |-  ( ( ( A ^ (
k  +  1 ) )  e.  RR  /\  ( A ^ k )  e.  RR  /\  ( A ^ M )  e.  RR )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4340, 24, 41, 42syl3anc 1233 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4436, 43mpand 427 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  <_  ( A ^ M )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
4544ex 114 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( ( A ^ k )  <_ 
( A ^ M
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
4645a2d 26 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) )  ->  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
473, 6, 9, 12, 16, 46uzind4 9547 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) )
4847expd 256 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  (
( 0  <_  A  /\  A  <_  1 )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
4948com12 30 . . 3  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  M )  -> 
( ( 0  <_  A  /\  A  <_  1
)  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
50493impia 1195 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
0  <_  A  /\  A  <_  1 )  -> 
( A ^ N
)  <_  ( A ^ M ) ) )
5150imp 123 1  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    x. cmul 7779    <_ cle 7955   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402  df-exp 10476
This theorem is referenced by:  exple1  10532  leexp2rd  10639
  Copyright terms: Public domain W3C validator