ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2r Unicode version

Theorem leexp2r 10775
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )

Proof of Theorem leexp2r
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . . 8  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
21breq1d 4069 . . . . . . 7  |-  ( j  =  M  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ M )  <_  ( A ^ M ) ) )
32imbi2d 230 . . . . . 6  |-  ( j  =  M  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) ) )
4 oveq2 5975 . . . . . . . 8  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
54breq1d 4069 . . . . . . 7  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ k )  <_ 
( A ^ M
) ) )
65imbi2d 230 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) ) ) )
7 oveq2 5975 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
87breq1d 4069 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
98imbi2d 230 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
( k  +  1 ) )  <_  ( A ^ M ) ) ) )
10 oveq2 5975 . . . . . . . 8  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1110breq1d 4069 . . . . . . 7  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ N )  <_  ( A ^ M ) ) )
1211imbi2d 230 . . . . . 6  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
13 reexpcl 10738 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  RR )
1413adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  e.  RR )
1514leidd 8622 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) )
1615a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) )
17 simprll 537 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  RR )
18 1red 8122 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  1  e.  RR )
19 simprlr 538 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  M  e.  NN0 )
20 simpl 109 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
21 eluznn0 9755 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
2219, 20, 21syl2anc 411 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  NN0 )
23 reexpcl 10738 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
2417, 22, 23syl2anc 411 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  RR )
25 simprrl 539 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  A )
26 expge0 10757 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
2717, 22, 25, 26syl3anc 1250 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  ( A ^ k
) )
28 simprrr 540 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  <_  1 )
2917, 18, 24, 27, 28lemul2ad 9048 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  A )  <_  ( ( A ^ k )  x.  1 ) )
3017recnd 8136 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  CC )
31 expp1 10728 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3230, 22, 31syl2anc 411 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3324recnd 8136 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  CC )
3433mulridd 8124 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  1 )  =  ( A ^
k ) )
3534eqcomd 2213 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  =  ( ( A ^
k )  x.  1 ) )
3629, 32, 353brtr4d 4091 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ k
) )
37 peano2nn0 9370 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3822, 37syl 14 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
k  +  1 )  e.  NN0 )
39 reexpcl 10738 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  RR )
4017, 38, 39syl2anc 411 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  RR )
4113ad2antrl 490 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ M )  e.  RR )
42 letr 8190 . . . . . . . . . 10  |-  ( ( ( A ^ (
k  +  1 ) )  e.  RR  /\  ( A ^ k )  e.  RR  /\  ( A ^ M )  e.  RR )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4340, 24, 41, 42syl3anc 1250 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4436, 43mpand 429 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  <_  ( A ^ M )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
4544ex 115 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( ( A ^ k )  <_ 
( A ^ M
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
4645a2d 26 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) )  ->  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
473, 6, 9, 12, 16, 46uzind4 9744 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) )
4847expd 258 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  (
( 0  <_  A  /\  A  <_  1 )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
4948com12 30 . . 3  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  M )  -> 
( ( 0  <_  A  /\  A  <_  1
)  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
50493impia 1203 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
0  <_  A  /\  A  <_  1 )  -> 
( A ^ N
)  <_  ( A ^ M ) ) )
5150imp 124 1  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    <_ cle 8143   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  exple1  10777  leexp2rd  10885
  Copyright terms: Public domain W3C validator