ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  leexp2r Unicode version

Theorem leexp2r 10347
Description: Weak ordering relationship for exponentiation. (Contributed by Paul Chapman, 14-Jan-2008.) (Revised by Mario Carneiro, 29-Apr-2014.)
Assertion
Ref Expression
leexp2r  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )

Proof of Theorem leexp2r
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . . . 8  |-  ( j  =  M  ->  ( A ^ j )  =  ( A ^ M
) )
21breq1d 3939 . . . . . . 7  |-  ( j  =  M  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ M )  <_  ( A ^ M ) ) )
32imbi2d 229 . . . . . 6  |-  ( j  =  M  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) ) )
4 oveq2 5782 . . . . . . . 8  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
54breq1d 3939 . . . . . . 7  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ k )  <_ 
( A ^ M
) ) )
65imbi2d 229 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) ) ) )
7 oveq2 5782 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
87breq1d 3939 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
98imbi2d 229 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
( k  +  1 ) )  <_  ( A ^ M ) ) ) )
10 oveq2 5782 . . . . . . . 8  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1110breq1d 3939 . . . . . . 7  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( A ^ M )  <->  ( A ^ N )  <_  ( A ^ M ) ) )
1211imbi2d 229 . . . . . 6  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
j )  <_  ( A ^ M ) )  <-> 
( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
13 reexpcl 10310 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( A ^ M
)  e.  RR )
1413adantr 274 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  e.  RR )
1514leidd 8276 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) )
1615a1i 9 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ M )  <_  ( A ^ M ) ) )
17 simprll 526 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  RR )
18 1red 7781 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  1  e.  RR )
19 simprlr 527 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  M  e.  NN0 )
20 simpl 108 . . . . . . . . . . . . 13  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  ( ZZ>= `  M )
)
21 eluznn0 9393 . . . . . . . . . . . . 13  |-  ( ( M  e.  NN0  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN0 )
2219, 20, 21syl2anc 408 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  k  e.  NN0 )
23 reexpcl 10310 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
2417, 22, 23syl2anc 408 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  RR )
25 simprrl 528 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  A )
26 expge0 10329 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
2717, 22, 25, 26syl3anc 1216 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  0  <_  ( A ^ k
) )
28 simprrr 529 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  <_  1 )
2917, 18, 24, 27, 28lemul2ad 8698 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  A )  <_  ( ( A ^ k )  x.  1 ) )
3017recnd 7794 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  A  e.  CC )
31 expp1 10300 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3230, 22, 31syl2anc 408 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  =  ( ( A ^
k )  x.  A
) )
3324recnd 7794 . . . . . . . . . . . 12  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  e.  CC )
3433mulid1d 7783 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  x.  1 )  =  ( A ^
k ) )
3534eqcomd 2145 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ k )  =  ( ( A ^
k )  x.  1 ) )
3629, 32, 353brtr4d 3960 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ k
) )
37 peano2nn0 9017 . . . . . . . . . . . 12  |-  ( k  e.  NN0  ->  ( k  +  1 )  e. 
NN0 )
3822, 37syl 14 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
k  +  1 )  e.  NN0 )
39 reexpcl 10310 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( k  +  1 )  e.  NN0 )  ->  ( A ^ (
k  +  1 ) )  e.  RR )
4017, 38, 39syl2anc 408 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ ( k  +  1 ) )  e.  RR )
4113ad2antrl 481 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  ( A ^ M )  e.  RR )
42 letr 7847 . . . . . . . . . 10  |-  ( ( ( A ^ (
k  +  1 ) )  e.  RR  /\  ( A ^ k )  e.  RR  /\  ( A ^ M )  e.  RR )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4340, 24, 41, 42syl3anc 1216 . . . . . . . . 9  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( ( A ^
( k  +  1 ) )  <_  ( A ^ k )  /\  ( A ^ k )  <_  ( A ^ M ) )  -> 
( A ^ (
k  +  1 ) )  <_  ( A ^ M ) ) )
4436, 43mpand 425 . . . . . . . 8  |-  ( ( k  e.  ( ZZ>= `  M )  /\  (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) ) )  ->  (
( A ^ k
)  <_  ( A ^ M )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) )
4544ex 114 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( ( A ^ k )  <_ 
( A ^ M
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
4645a2d 26 . . . . . 6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( (
( ( A  e.  RR  /\  M  e. 
NN0 )  /\  (
0  <_  A  /\  A  <_  1 ) )  ->  ( A ^
k )  <_  ( A ^ M ) )  ->  ( ( ( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( A ^ M
) ) ) )
473, 6, 9, 12, 16, 46uzind4 9383 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( (
( A  e.  RR  /\  M  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) ) )
4847expd 256 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( A  e.  RR  /\  M  e.  NN0 )  ->  (
( 0  <_  A  /\  A  <_  1 )  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
4948com12 30 . . 3  |-  ( ( A  e.  RR  /\  M  e.  NN0 )  -> 
( N  e.  (
ZZ>= `  M )  -> 
( ( 0  <_  A  /\  A  <_  1
)  ->  ( A ^ N )  <_  ( A ^ M ) ) ) )
50493impia 1178 . 2  |-  ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M )
)  ->  ( (
0  <_  A  /\  A  <_  1 )  -> 
( A ^ N
)  <_  ( A ^ M ) ) )
5150imp 123 1  |-  ( ( ( A  e.  RR  /\  M  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( 0  <_  A  /\  A  <_  1 ) )  ->  ( A ^ N )  <_  ( A ^ M ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    <_ cle 7801   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  exple1  10349  leexp2rd  10454
  Copyright terms: Public domain W3C validator