ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climsqz2 Unicode version

Theorem climsqz2 11328
Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
Hypotheses
Ref Expression
climadd.1  |-  Z  =  ( ZZ>= `  M )
climadd.2  |-  ( ph  ->  M  e.  ZZ )
climadd.4  |-  ( ph  ->  F  ~~>  A )
climsqz.5  |-  ( ph  ->  G  e.  W )
climsqz.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
climsqz.7  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
climsqz2.8  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
climsqz2.9  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( G `  k
) )
Assertion
Ref Expression
climsqz2  |-  ( ph  ->  G  ~~>  A )
Distinct variable groups:    k, F    ph, k    A, k    k, G    k, M    k, Z
Allowed substitution hint:    W( k)

Proof of Theorem climsqz2
Dummy variables  x  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climadd.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
2 climadd.2 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
32adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  M  e.  ZZ )
4 simpr 110 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5 eqidd 2178 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  =  ( F `  k ) )
6 climadd.4 . . . . . 6  |-  ( ph  ->  F  ~~>  A )
76adantr 276 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  F  ~~>  A )
81, 3, 4, 5, 7climi2 11280 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  A ) )  <  x )
91uztrn2 9534 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
10 climsqz.7 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
11 climsqz.6 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
121, 2, 6, 11climrecl 11316 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  RR )
1312adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  A  e.  RR )
14 climsqz2.8 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  <_  ( F `  k
) )
1510, 11, 13, 14lesub1dd 8508 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  <_  ( ( F `
 k )  -  A ) )
16 climsqz2.9 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( G `  k
) )
1713, 10, 16abssubge0d 11169 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  =  ( ( G `  k )  -  A
) )
1813, 10, 11, 16, 14letrd 8071 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  Z )  ->  A  <_  ( F `  k
) )
1913, 11, 18abssubge0d 11169 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  =  ( ( F `  k )  -  A
) )
2015, 17, 193brtr4d 4032 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2120adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  <_ 
( abs `  (
( F `  k
)  -  A ) ) )
2210adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( G `  k )  e.  RR )
2312ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  A  e.  RR )
2422, 23resubcld 8328 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  RR )
2524recnd 7976 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( G `  k
)  -  A )  e.  CC )
2625abscld 11174 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( G `
 k )  -  A ) )  e.  RR )
2711adantlr 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( F `  k )  e.  RR )
2827, 23resubcld 8328 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  RR )
2928recnd 7976 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( F `  k
)  -  A )  e.  CC )
3029abscld 11174 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  ( abs `  ( ( F `
 k )  -  A ) )  e.  RR )
31 rpre 9647 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  x  e.  RR )
3231ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  x  e.  RR )
33 lelttr 8036 . . . . . . . . . 10  |-  ( ( ( abs `  (
( G `  k
)  -  A ) )  e.  RR  /\  ( abs `  ( ( F `  k )  -  A ) )  e.  RR  /\  x  e.  RR )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3426, 30, 32, 33syl3anc 1238 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( ( abs `  (
( G `  k
)  -  A ) )  <_  ( abs `  ( ( F `  k )  -  A
) )  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  ->  ( abs `  ( ( G `
 k )  -  A ) )  < 
x ) )
3521, 34mpand 429 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  k  e.  Z )  ->  (
( abs `  (
( F `  k
)  -  A ) )  <  x  -> 
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
369, 35sylan2 286 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  Z  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3736anassrs 400 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  ( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3837ralimdva 2544 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  A ) )  <  x  ->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
3938reximdva 2579 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( F `  k )  -  A
) )  <  x  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( G `  k )  -  A ) )  <  x ) )
408, 39mpd 13 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x )
4140ralrimiva 2550 . 2  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( G `  k )  -  A
) )  <  x
)
42 climsqz.5 . . 3  |-  ( ph  ->  G  e.  W )
43 eqidd 2178 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =  ( G `  k ) )
4412recnd 7976 . . 3  |-  ( ph  ->  A  e.  CC )
4510recnd 7976 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
461, 2, 42, 43, 44, 45clim2c 11276 . 2  |-  ( ph  ->  ( G  ~~>  A  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( abs `  (
( G `  k
)  -  A ) )  <  x ) )
4741, 46mpbird 167 1  |-  ( ph  ->  G  ~~>  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   RRcr 7801    < clt 7982    <_ cle 7983    - cmin 8118   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640   abscabs 10990    ~~> cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by:  expcnvap0  11494  expcnvre  11495  explecnv  11497
  Copyright terms: Public domain W3C validator