| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > climsqz2 | Unicode version | ||
| Description: Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.) | 
| Ref | Expression | 
|---|---|
| climadd.1 | 
 | 
| climadd.2 | 
 | 
| climadd.4 | 
 | 
| climsqz.5 | 
 | 
| climsqz.6 | 
 | 
| climsqz.7 | 
 | 
| climsqz2.8 | 
 | 
| climsqz2.9 | 
 | 
| Ref | Expression | 
|---|---|
| climsqz2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | climadd.1 | 
. . . . 5
 | |
| 2 | climadd.2 | 
. . . . . 6
 | |
| 3 | 2 | adantr 276 | 
. . . . 5
 | 
| 4 | simpr 110 | 
. . . . 5
 | |
| 5 | eqidd 2197 | 
. . . . 5
 | |
| 6 | climadd.4 | 
. . . . . 6
 | |
| 7 | 6 | adantr 276 | 
. . . . 5
 | 
| 8 | 1, 3, 4, 5, 7 | climi2 11453 | 
. . . 4
 | 
| 9 | 1 | uztrn2 9619 | 
. . . . . . . 8
 | 
| 10 | climsqz.7 | 
. . . . . . . . . . . 12
 | |
| 11 | climsqz.6 | 
. . . . . . . . . . . 12
 | |
| 12 | 1, 2, 6, 11 | climrecl 11489 | 
. . . . . . . . . . . . 13
 | 
| 13 | 12 | adantr 276 | 
. . . . . . . . . . . 12
 | 
| 14 | climsqz2.8 | 
. . . . . . . . . . . 12
 | |
| 15 | 10, 11, 13, 14 | lesub1dd 8588 | 
. . . . . . . . . . 11
 | 
| 16 | climsqz2.9 | 
. . . . . . . . . . . 12
 | |
| 17 | 13, 10, 16 | abssubge0d 11341 | 
. . . . . . . . . . 11
 | 
| 18 | 13, 10, 11, 16, 14 | letrd 8150 | 
. . . . . . . . . . . 12
 | 
| 19 | 13, 11, 18 | abssubge0d 11341 | 
. . . . . . . . . . 11
 | 
| 20 | 15, 17, 19 | 3brtr4d 4065 | 
. . . . . . . . . 10
 | 
| 21 | 20 | adantlr 477 | 
. . . . . . . . 9
 | 
| 22 | 10 | adantlr 477 | 
. . . . . . . . . . . . 13
 | 
| 23 | 12 | ad2antrr 488 | 
. . . . . . . . . . . . 13
 | 
| 24 | 22, 23 | resubcld 8407 | 
. . . . . . . . . . . 12
 | 
| 25 | 24 | recnd 8055 | 
. . . . . . . . . . 11
 | 
| 26 | 25 | abscld 11346 | 
. . . . . . . . . 10
 | 
| 27 | 11 | adantlr 477 | 
. . . . . . . . . . . . 13
 | 
| 28 | 27, 23 | resubcld 8407 | 
. . . . . . . . . . . 12
 | 
| 29 | 28 | recnd 8055 | 
. . . . . . . . . . 11
 | 
| 30 | 29 | abscld 11346 | 
. . . . . . . . . 10
 | 
| 31 | rpre 9735 | 
. . . . . . . . . . 11
 | |
| 32 | 31 | ad2antlr 489 | 
. . . . . . . . . 10
 | 
| 33 | lelttr 8115 | 
. . . . . . . . . 10
 | |
| 34 | 26, 30, 32, 33 | syl3anc 1249 | 
. . . . . . . . 9
 | 
| 35 | 21, 34 | mpand 429 | 
. . . . . . . 8
 | 
| 36 | 9, 35 | sylan2 286 | 
. . . . . . 7
 | 
| 37 | 36 | anassrs 400 | 
. . . . . 6
 | 
| 38 | 37 | ralimdva 2564 | 
. . . . 5
 | 
| 39 | 38 | reximdva 2599 | 
. . . 4
 | 
| 40 | 8, 39 | mpd 13 | 
. . 3
 | 
| 41 | 40 | ralrimiva 2570 | 
. 2
 | 
| 42 | climsqz.5 | 
. . 3
 | |
| 43 | eqidd 2197 | 
. . 3
 | |
| 44 | 12 | recnd 8055 | 
. . 3
 | 
| 45 | 10 | recnd 8055 | 
. . 3
 | 
| 46 | 1, 2, 42, 43, 44, 45 | clim2c 11449 | 
. 2
 | 
| 47 | 41, 46 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-rp 9729 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 | 
| This theorem is referenced by: expcnvap0 11667 expcnvre 11668 explecnv 11670 | 
| Copyright terms: Public domain | W3C validator |