ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zprodap0 Unicode version

Theorem zprodap0 11746
Description: Nonzero series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 6-Dec-2017.)
Hypotheses
Ref Expression
zprodn0.1  |-  Z  =  ( ZZ>= `  M )
zprodn0.2  |-  ( ph  ->  M  e.  ZZ )
zprodap0.3  |-  ( ph  ->  X #  0 )
zprodn0.4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
zprodap0.dc  |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )
zprodn0.5  |-  ( ph  ->  A  C_  Z )
zprodn0.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
1 ) )
zprodn0.7  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
zprodap0  |-  ( ph  ->  prod_ k  e.  A  B  =  X )
Distinct variable groups:    A, j, k    B, j    k, F    j, M, k    j, Z, k    ph, j, k
Allowed substitution hints:    B( k)    F( j)    X( j, k)

Proof of Theorem zprodap0
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zprodn0.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 zprodn0.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 zprodn0.4 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F )  ~~>  X )
4 zprodap0.3 . . . 4  |-  ( ph  ->  X #  0 )
51, 2, 3, 4ntrivcvgap0 11714 . . 3  |-  ( ph  ->  E. m  e.  Z  E. x ( x #  0  /\  seq m (  x.  ,  F )  ~~>  x ) )
6 zprodn0.5 . . 3  |-  ( ph  ->  A  C_  Z )
7 zprodap0.dc . . 3  |-  ( ph  ->  A. j  e.  Z DECID  j  e.  A )
8 zprodn0.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  k )  =  if ( k  e.  A ,  B , 
1 ) )
9 zprodn0.7 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
101, 2, 5, 6, 7, 8, 9zproddc 11744 . 2  |-  ( ph  ->  prod_ k  e.  A  B  =  (  ~~>  `  seq M (  x.  ,  F ) ) )
11 fclim 11459 . . . 4  |-  ~~>  : dom  ~~>  --> CC
12 ffun 5410 . . . 4  |-  (  ~~>  : dom  ~~>  --> CC 
->  Fun  ~~>  )
1311, 12ax-mp 5 . . 3  |-  Fun  ~~>
14 funbrfv 5599 . . 3  |-  ( Fun  ~~>  ->  (  seq M (  x.  ,  F )  ~~>  X  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X ) )
1513, 3, 14mpsyl 65 . 2  |-  ( ph  ->  (  ~~>  `  seq M (  x.  ,  F ) )  =  X )
1610, 15eqtrd 2229 1  |-  ( ph  ->  prod_ k  e.  A  B  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   ifcif 3561   class class class wbr 4033   dom cdm 4663   Fun wfun 5252   -->wf 5254   ` cfv 5258   CCcc 7877   0cc0 7879   1c1 7880    x. cmul 7884   # cap 8608   ZZcz 9326   ZZ>=cuz 9601    seqcseq 10539    ~~> cli 11443   prod_cprod 11715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-proddc 11716
This theorem is referenced by:  iprodap0  11747  prod0  11750  prod1dc  11751
  Copyright terms: Public domain W3C validator