| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | GIF version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12750. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxslid | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12729 | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 1, 2 | ndxarg 12728 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 5 | 4, 2 | eqeltri 2269 | . 2 ⊢ (𝐸‘ndx) ∈ ℕ |
| 6 | 3, 5 | pm3.2i 272 | 1 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 ℕcn 9009 ndxcnx 12702 Slot cslot 12704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-inn 9010 df-ndx 12708 df-slot 12709 |
| This theorem is referenced by: base0 12755 baseslid 12762 plusgslid 12817 2stropg 12825 2strop1g 12828 mulrslid 12836 starvslid 12845 scaslid 12857 vscaslid 12867 ipslid 12875 tsetslid 12892 pleslid 12906 dsslid 12921 homslid 12939 ccoslid 12942 prdsbaslemss 12978 zlmlemg 14262 znbaslemnn 14273 |
| Copyright terms: Public domain | W3C validator |