| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | GIF version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 13085. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxslid | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 13064 | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 1, 2 | ndxarg 13063 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 5 | 4, 2 | eqeltri 2302 | . 2 ⊢ (𝐸‘ndx) ∈ ℕ |
| 6 | 3, 5 | pm3.2i 272 | 1 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 ℕcn 9118 ndxcnx 13037 Slot cslot 13039 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-cnex 8098 ax-resscn 8099 ax-1re 8101 ax-addrcl 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-inn 9119 df-ndx 13043 df-slot 13044 |
| This theorem is referenced by: base0 13090 baseslid 13098 plusgslid 13153 2stropg 13162 2strop1g 13165 mulrslid 13173 starvslid 13182 scaslid 13194 vscaslid 13204 ipslid 13212 tsetslid 13229 pleslid 13243 dsslid 13258 homslid 13276 ccoslid 13279 prdsbaslemss 13315 zlmlemg 14600 znbaslemnn 14611 iedgvalg 15826 iedgex 15828 edgfiedgval2dom 15844 setsiedg 15861 iedgval0 15863 edgvalg 15868 edgstruct 15872 |
| Copyright terms: Public domain | W3C validator |