Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndxslid | GIF version |
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12460. (Contributed by Jim Kingdon, 29-Jan-2023.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxslid | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 12440 | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 12439 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 4, 2 | eqeltri 2243 | . 2 ⊢ (𝐸‘ndx) ∈ ℕ |
6 | 3, 5 | pm3.2i 270 | 1 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ∈ wcel 2141 ‘cfv 5198 ℕcn 8878 ndxcnx 12413 Slot cslot 12415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-inn 8879 df-ndx 12419 df-slot 12420 |
This theorem is referenced by: base0 12465 baseslid 12472 plusgslid 12513 2stropg 12520 2strop1g 12523 mulrslid 12530 starvslid 12539 scaslid 12547 vscaslid 12550 ipslid 12558 tsetslid 12568 pleslid 12575 dsslid 12578 |
Copyright terms: Public domain | W3C validator |