| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | GIF version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 13043. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxslid | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 13022 | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 1, 2 | ndxarg 13021 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 5 | 4, 2 | eqeltri 2282 | . 2 ⊢ (𝐸‘ndx) ∈ ℕ |
| 6 | 3, 5 | pm3.2i 272 | 1 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1375 ∈ wcel 2180 ‘cfv 5294 ℕcn 9078 ndxcnx 12995 Slot cslot 12997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1re 8061 ax-addrcl 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-inn 9079 df-ndx 13001 df-slot 13002 |
| This theorem is referenced by: base0 13048 baseslid 13056 plusgslid 13111 2stropg 13120 2strop1g 13123 mulrslid 13131 starvslid 13140 scaslid 13152 vscaslid 13162 ipslid 13170 tsetslid 13187 pleslid 13201 dsslid 13216 homslid 13234 ccoslid 13237 prdsbaslemss 13273 zlmlemg 14557 znbaslemnn 14568 iedgvalg 15783 iedgex 15785 edgfiedgval2dom 15801 setsiedg 15818 iedgval0 15820 edgvalg 15825 edgstruct 15829 |
| Copyright terms: Public domain | W3C validator |