ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxslid GIF version

Theorem ndxslid 13065
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 13085. (Contributed by Jim Kingdon, 29-Jan-2023.)
Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxslid (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)

Proof of Theorem ndxslid
StepHypRef Expression
1 ndxarg.1 . . 3 𝐸 = Slot 𝑁
2 ndxarg.2 . . 3 𝑁 ∈ ℕ
31, 2ndxid 13064 . 2 𝐸 = Slot (𝐸‘ndx)
41, 2ndxarg 13063 . . 3 (𝐸‘ndx) = 𝑁
54, 2eqeltri 2302 . 2 (𝐸‘ndx) ∈ ℕ
63, 5pm3.2i 272 1 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wcel 2200  cfv 5318  cn 9118  ndxcnx 13037  Slot cslot 13039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099  ax-1re 8101  ax-addrcl 8104
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fv 5326  df-inn 9119  df-ndx 13043  df-slot 13044
This theorem is referenced by:  base0  13090  baseslid  13098  plusgslid  13153  2stropg  13162  2strop1g  13165  mulrslid  13173  starvslid  13182  scaslid  13194  vscaslid  13204  ipslid  13212  tsetslid  13229  pleslid  13243  dsslid  13258  homslid  13276  ccoslid  13279  prdsbaslemss  13315  zlmlemg  14600  znbaslemnn  14611  iedgvalg  15826  iedgex  15828  edgfiedgval2dom  15844  setsiedg  15861  iedgval0  15863  edgvalg  15868  edgstruct  15872
  Copyright terms: Public domain W3C validator