![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ndxslid | GIF version |
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12699. (Contributed by Jim Kingdon, 29-Jan-2023.) |
Ref | Expression |
---|---|
ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
ndxslid | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | 1, 2 | ndxid 12678 | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) |
4 | 1, 2 | ndxarg 12677 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
5 | 4, 2 | eqeltri 2269 | . 2 ⊢ (𝐸‘ndx) ∈ ℕ |
6 | 3, 5 | pm3.2i 272 | 1 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 ℕcn 8987 ndxcnx 12651 Slot cslot 12653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-cnex 7968 ax-resscn 7969 ax-1re 7971 ax-addrcl 7974 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-inn 8988 df-ndx 12657 df-slot 12658 |
This theorem is referenced by: base0 12704 baseslid 12711 plusgslid 12766 2stropg 12774 2strop1g 12777 mulrslid 12785 starvslid 12794 scaslid 12806 vscaslid 12816 ipslid 12824 tsetslid 12841 pleslid 12855 dsslid 12866 homslid 12883 ccoslid 12885 zlmlemg 14160 znbaslemnn 14171 |
Copyright terms: Public domain | W3C validator |