| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxslid | GIF version | ||
| Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12921. (Contributed by Jim Kingdon, 29-Jan-2023.) |
| Ref | Expression |
|---|---|
| ndxarg.1 | ⊢ 𝐸 = Slot 𝑁 |
| ndxarg.2 | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| ndxslid | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndxarg.1 | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | ndxarg.2 | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | 1, 2 | ndxid 12900 | . 2 ⊢ 𝐸 = Slot (𝐸‘ndx) |
| 4 | 1, 2 | ndxarg 12899 | . . 3 ⊢ (𝐸‘ndx) = 𝑁 |
| 5 | 4, 2 | eqeltri 2279 | . 2 ⊢ (𝐸‘ndx) ∈ ℕ |
| 6 | 3, 5 | pm3.2i 272 | 1 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 ℕcn 9043 ndxcnx 12873 Slot cslot 12875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 ax-1re 8026 ax-addrcl 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3000 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-inn 9044 df-ndx 12879 df-slot 12880 |
| This theorem is referenced by: base0 12926 baseslid 12933 plusgslid 12988 2stropg 12997 2strop1g 13000 mulrslid 13008 starvslid 13017 scaslid 13029 vscaslid 13039 ipslid 13047 tsetslid 13064 pleslid 13078 dsslid 13093 homslid 13111 ccoslid 13114 prdsbaslemss 13150 zlmlemg 14434 znbaslemnn 14445 iedgvalg 15660 iedgex 15662 edgfiedgval2dom 15678 iedgval0 15695 edgvalg 15700 edgstruct 15704 |
| Copyright terms: Public domain | W3C validator |