ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxslid GIF version

Theorem ndxslid 12441
Description: A structure component extractor is defined by its own index. That the index is a natural number will also be needed in quite a few contexts so it is included in the conclusion of this theorem which can be used as a hypothesis of theorems like strslfv 12460. (Contributed by Jim Kingdon, 29-Jan-2023.)
Hypotheses
Ref Expression
ndxarg.1 𝐸 = Slot 𝑁
ndxarg.2 𝑁 ∈ ℕ
Assertion
Ref Expression
ndxslid (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)

Proof of Theorem ndxslid
StepHypRef Expression
1 ndxarg.1 . . 3 𝐸 = Slot 𝑁
2 ndxarg.2 . . 3 𝑁 ∈ ℕ
31, 2ndxid 12440 . 2 𝐸 = Slot (𝐸‘ndx)
41, 2ndxarg 12439 . . 3 (𝐸‘ndx) = 𝑁
54, 2eqeltri 2243 . 2 (𝐸‘ndx) ∈ ℕ
63, 5pm3.2i 270 1 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wcel 2141  cfv 5198  cn 8878  ndxcnx 12413  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-inn 8879  df-ndx 12419  df-slot 12420
This theorem is referenced by:  base0  12465  baseslid  12472  plusgslid  12513  2stropg  12520  2strop1g  12523  mulrslid  12530  starvslid  12539  scaslid  12547  vscaslid  12550  ipslid  12558  tsetslid  12568  pleslid  12575  dsslid  12578
  Copyright terms: Public domain W3C validator