| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9346 |
. 2
| |
| 2 | nn0addcl 9365 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0id 8068 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 df-n0 9331 |
| This theorem is referenced by: peano2z 9443 nn0split 10293 fzonn0p1p1 10379 elfzom1p1elfzo 10380 frecfzennn 10608 leexp2r 10775 facdiv 10920 facwordi 10922 faclbnd 10923 faclbnd2 10924 faclbnd3 10925 faclbnd6 10926 bcnp1n 10941 bcp1m1 10947 bcpasc 10948 hashfz 11003 pfxccatpfx2 11228 pfxccat3a 11229 bcxmas 11915 geolim 11937 geo2sum 11940 mertenslemub 11960 mertenslemi1 11961 mertenslem2 11962 mertensabs 11963 efcllemp 12084 eftlub 12116 efsep 12117 effsumlt 12118 nn0ob 12334 nn0oddm1d2 12335 bitsp1 12377 nn0seqcvgd 12478 algcvg 12485 pw2dvdseulemle 12604 2sqpwodd 12613 nonsq 12644 pcprendvds 12728 pcpremul 12731 pcdvdsb 12758 4sqlem11 12839 ennnfonelemp1 12892 ennnfonelemkh 12898 ennnfonelemim 12910 elply2 15322 plyaddlem1 15334 plymullem1 15335 plycoeid3 15344 plycolemc 15345 dvply1 15352 dvply2g 15353 perfectlem1 15586 2lgslem3d1 15692 |
| Copyright terms: Public domain | W3C validator |