![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version |
Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
peano2nn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 9259 |
. 2
![]() ![]() ![]() ![]() | |
2 | nn0addcl 9278 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan2 425 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4148 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-inn 8985 df-n0 9244 |
This theorem is referenced by: peano2z 9356 nn0split 10205 fzonn0p1p1 10283 elfzom1p1elfzo 10284 frecfzennn 10500 leexp2r 10667 facdiv 10812 facwordi 10814 faclbnd 10815 faclbnd2 10816 faclbnd3 10817 faclbnd6 10818 bcnp1n 10833 bcp1m1 10839 bcpasc 10840 hashfz 10895 bcxmas 11635 geolim 11657 geo2sum 11660 mertenslemub 11680 mertenslemi1 11681 mertenslem2 11682 mertensabs 11683 efcllemp 11804 eftlub 11836 efsep 11837 effsumlt 11838 nn0ob 12052 nn0oddm1d2 12053 nn0seqcvgd 12182 algcvg 12189 pw2dvdseulemle 12308 2sqpwodd 12317 nonsq 12348 pcprendvds 12431 pcpremul 12434 pcdvdsb 12461 4sqlem11 12542 ennnfonelemp1 12566 ennnfonelemkh 12572 ennnfonelemim 12584 elply2 14914 plyaddlem1 14926 plymullem1 14927 plycolemc 14936 dvply1 14943 2lgslem3d1 15257 |
Copyright terms: Public domain | W3C validator |