| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9385 |
. 2
| |
| 2 | nn0addcl 9404 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0id 8107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 df-n0 9370 |
| This theorem is referenced by: peano2z 9482 nn0split 10332 fzonn0p1p1 10419 elfzom1p1elfzo 10420 frecfzennn 10648 leexp2r 10815 facdiv 10960 facwordi 10962 faclbnd 10963 faclbnd2 10964 faclbnd3 10965 faclbnd6 10966 bcnp1n 10981 bcp1m1 10987 bcpasc 10988 hashfz 11043 ffz0iswrdnn0 11098 pfxccatpfx2 11269 pfxccat3a 11270 bcxmas 12000 geolim 12022 geo2sum 12025 mertenslemub 12045 mertenslemi1 12046 mertenslem2 12047 mertensabs 12048 efcllemp 12169 eftlub 12201 efsep 12202 effsumlt 12203 nn0ob 12419 nn0oddm1d2 12420 bitsp1 12462 nn0seqcvgd 12563 algcvg 12570 pw2dvdseulemle 12689 2sqpwodd 12698 nonsq 12729 pcprendvds 12813 pcpremul 12816 pcdvdsb 12843 4sqlem11 12924 ennnfonelemp1 12977 ennnfonelemkh 12983 ennnfonelemim 12995 elply2 15409 plyaddlem1 15421 plymullem1 15422 plycoeid3 15431 plycolemc 15432 dvply1 15439 dvply2g 15440 perfectlem1 15673 2lgslem3d1 15779 |
| Copyright terms: Public domain | W3C validator |