Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version |
Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
peano2nn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 9151 | . 2 | |
2 | nn0addcl 9170 | . 2 | |
3 | 1, 2 | mpan2 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 (class class class)co 5853 c1 7775 caddc 7777 cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-i2m1 7879 ax-0id 7882 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-n0 9136 |
This theorem is referenced by: peano2z 9248 nn0split 10092 fzonn0p1p1 10169 elfzom1p1elfzo 10170 frecfzennn 10382 leexp2r 10530 facdiv 10672 facwordi 10674 faclbnd 10675 faclbnd2 10676 faclbnd3 10677 faclbnd6 10678 bcnp1n 10693 bcp1m1 10699 bcpasc 10700 hashfz 10756 bcxmas 11452 geolim 11474 geo2sum 11477 mertenslemub 11497 mertenslemi1 11498 mertenslem2 11499 mertensabs 11500 efcllemp 11621 eftlub 11653 efsep 11654 effsumlt 11655 nn0ob 11867 nn0oddm1d2 11868 nn0seqcvgd 11995 algcvg 12002 pw2dvdseulemle 12121 2sqpwodd 12130 nonsq 12161 pcprendvds 12244 pcpremul 12247 pcdvdsb 12273 ennnfonelemp1 12361 ennnfonelemkh 12367 ennnfonelemim 12379 |
Copyright terms: Public domain | W3C validator |