| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) | 
| Ref | Expression | 
|---|---|
| peano2nn0 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn0 9265 | 
. 2
 | |
| 2 | nn0addcl 9284 | 
. 2
 | |
| 3 | 1, 2 | mpan2 425 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0id 7987 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 df-n0 9250 | 
| This theorem is referenced by: peano2z 9362 nn0split 10211 fzonn0p1p1 10289 elfzom1p1elfzo 10290 frecfzennn 10518 leexp2r 10685 facdiv 10830 facwordi 10832 faclbnd 10833 faclbnd2 10834 faclbnd3 10835 faclbnd6 10836 bcnp1n 10851 bcp1m1 10857 bcpasc 10858 hashfz 10913 bcxmas 11654 geolim 11676 geo2sum 11679 mertenslemub 11699 mertenslemi1 11700 mertenslem2 11701 mertensabs 11702 efcllemp 11823 eftlub 11855 efsep 11856 effsumlt 11857 nn0ob 12073 nn0oddm1d2 12074 bitsp1 12115 nn0seqcvgd 12209 algcvg 12216 pw2dvdseulemle 12335 2sqpwodd 12344 nonsq 12375 pcprendvds 12459 pcpremul 12462 pcdvdsb 12489 4sqlem11 12570 ennnfonelemp1 12623 ennnfonelemkh 12629 ennnfonelemim 12641 elply2 14971 plyaddlem1 14983 plymullem1 14984 plycoeid3 14993 plycolemc 14994 dvply1 15001 dvply2g 15002 perfectlem1 15235 2lgslem3d1 15341 | 
| Copyright terms: Public domain | W3C validator |