| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9313 |
. 2
| |
| 2 | nn0addcl 9332 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-i2m1 8032 ax-0id 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 df-n0 9298 |
| This theorem is referenced by: peano2z 9410 nn0split 10260 fzonn0p1p1 10344 elfzom1p1elfzo 10345 frecfzennn 10573 leexp2r 10740 facdiv 10885 facwordi 10887 faclbnd 10888 faclbnd2 10889 faclbnd3 10890 faclbnd6 10891 bcnp1n 10906 bcp1m1 10912 bcpasc 10913 hashfz 10968 bcxmas 11833 geolim 11855 geo2sum 11858 mertenslemub 11878 mertenslemi1 11879 mertenslem2 11880 mertensabs 11881 efcllemp 12002 eftlub 12034 efsep 12035 effsumlt 12036 nn0ob 12252 nn0oddm1d2 12253 bitsp1 12295 nn0seqcvgd 12396 algcvg 12403 pw2dvdseulemle 12522 2sqpwodd 12531 nonsq 12562 pcprendvds 12646 pcpremul 12649 pcdvdsb 12676 4sqlem11 12757 ennnfonelemp1 12810 ennnfonelemkh 12816 ennnfonelemim 12828 elply2 15240 plyaddlem1 15252 plymullem1 15253 plycoeid3 15262 plycolemc 15263 dvply1 15270 dvply2g 15271 perfectlem1 15504 2lgslem3d1 15610 |
| Copyright terms: Public domain | W3C validator |