| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9282 |
. 2
| |
| 2 | nn0addcl 9301 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0id 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 df-n0 9267 |
| This theorem is referenced by: peano2z 9379 nn0split 10228 fzonn0p1p1 10306 elfzom1p1elfzo 10307 frecfzennn 10535 leexp2r 10702 facdiv 10847 facwordi 10849 faclbnd 10850 faclbnd2 10851 faclbnd3 10852 faclbnd6 10853 bcnp1n 10868 bcp1m1 10874 bcpasc 10875 hashfz 10930 bcxmas 11671 geolim 11693 geo2sum 11696 mertenslemub 11716 mertenslemi1 11717 mertenslem2 11718 mertensabs 11719 efcllemp 11840 eftlub 11872 efsep 11873 effsumlt 11874 nn0ob 12090 nn0oddm1d2 12091 bitsp1 12133 nn0seqcvgd 12234 algcvg 12241 pw2dvdseulemle 12360 2sqpwodd 12369 nonsq 12400 pcprendvds 12484 pcpremul 12487 pcdvdsb 12514 4sqlem11 12595 ennnfonelemp1 12648 ennnfonelemkh 12654 ennnfonelemim 12666 elply2 15055 plyaddlem1 15067 plymullem1 15068 plycoeid3 15077 plycolemc 15078 dvply1 15085 dvply2g 15086 perfectlem1 15319 2lgslem3d1 15425 |
| Copyright terms: Public domain | W3C validator |