| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version | ||
| Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| peano2nn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9311 |
. 2
| |
| 2 | nn0addcl 9330 |
. 2
| |
| 3 | 1, 2 | mpan2 425 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0id 8033 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 df-n0 9296 |
| This theorem is referenced by: peano2z 9408 nn0split 10258 fzonn0p1p1 10342 elfzom1p1elfzo 10343 frecfzennn 10571 leexp2r 10738 facdiv 10883 facwordi 10885 faclbnd 10886 faclbnd2 10887 faclbnd3 10888 faclbnd6 10889 bcnp1n 10904 bcp1m1 10910 bcpasc 10911 hashfz 10966 bcxmas 11800 geolim 11822 geo2sum 11825 mertenslemub 11845 mertenslemi1 11846 mertenslem2 11847 mertensabs 11848 efcllemp 11969 eftlub 12001 efsep 12002 effsumlt 12003 nn0ob 12219 nn0oddm1d2 12220 bitsp1 12262 nn0seqcvgd 12363 algcvg 12370 pw2dvdseulemle 12489 2sqpwodd 12498 nonsq 12529 pcprendvds 12613 pcpremul 12616 pcdvdsb 12643 4sqlem11 12724 ennnfonelemp1 12777 ennnfonelemkh 12783 ennnfonelemim 12795 elply2 15207 plyaddlem1 15219 plymullem1 15220 plycoeid3 15229 plycolemc 15230 dvply1 15237 dvply2g 15238 perfectlem1 15471 2lgslem3d1 15577 |
| Copyright terms: Public domain | W3C validator |