![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2nn0 | Unicode version |
Description: Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
peano2nn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 9256 |
. 2
![]() ![]() ![]() ![]() | |
2 | nn0addcl 9275 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan2 425 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-sep 4147 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-inn 8983 df-n0 9241 |
This theorem is referenced by: peano2z 9353 nn0split 10202 fzonn0p1p1 10280 elfzom1p1elfzo 10281 frecfzennn 10497 leexp2r 10664 facdiv 10809 facwordi 10811 faclbnd 10812 faclbnd2 10813 faclbnd3 10814 faclbnd6 10815 bcnp1n 10830 bcp1m1 10836 bcpasc 10837 hashfz 10892 bcxmas 11632 geolim 11654 geo2sum 11657 mertenslemub 11677 mertenslemi1 11678 mertenslem2 11679 mertensabs 11680 efcllemp 11801 eftlub 11833 efsep 11834 effsumlt 11835 nn0ob 12049 nn0oddm1d2 12050 nn0seqcvgd 12179 algcvg 12186 pw2dvdseulemle 12305 2sqpwodd 12314 nonsq 12345 pcprendvds 12428 pcpremul 12431 pcdvdsb 12458 4sqlem11 12539 ennnfonelemp1 12563 ennnfonelemkh 12569 ennnfonelemim 12581 elply2 14881 plyaddlem1 14893 plymullem1 14894 |
Copyright terms: Public domain | W3C validator |