ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nnALT Unicode version

Theorem nn0ge2m1nnALT 9654
Description: Alternate proof of nn0ge2m1nn 9271: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9569, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9271. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
nn0ge2m1nnALT  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  NN )

Proof of Theorem nn0ge2m1nnALT
StepHypRef Expression
1 2z 9316 . . . 4  |-  2  e.  ZZ
21a1i 9 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  e.  ZZ )
3 nn0z 9308 . . . 4  |-  ( N  e.  NN0  ->  N  e.  ZZ )
43adantr 276 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  ZZ )
5 simpr 110 . . 3  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
2  <_  N )
6 eluz2 9569 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( 2  e.  ZZ  /\  N  e.  ZZ  /\  2  <_  N ) )
72, 4, 5, 6syl3anbrc 1183 . 2  |-  ( ( N  e.  NN0  /\  2  <_  N )  ->  N  e.  ( ZZ>= ` 
2 ) )
8 uz2m1nn 9641 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  -  1 )  e.  NN )
97, 8syl 14 1  |-  ( ( N  e.  NN0  /\  2  <_  N )  -> 
( N  -  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2160   class class class wbr 4021   ` cfv 5238  (class class class)co 5900   1c1 7847    <_ cle 8028    - cmin 8163   NNcn 8954   2c2 9005   NN0cn0 9211   ZZcz 9288   ZZ>=cuz 9563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-inn 8955  df-2 9013  df-n0 9212  df-z 9289  df-uz 9564
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator