Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2z | Unicode version |
Description: Two is an integer. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
2z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2nn 8988 | . 2 | |
2 | 1 | nnzi 9182 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2128 c2 8878 cz 9161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-addass 7828 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-br 3966 df-opab 4026 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-2 8886 df-z 9162 |
This theorem is referenced by: nn0n0n1ge2b 9237 nn0lt2 9239 nn0le2is012 9240 zadd2cl 9287 eluz4eluz2 9472 uzuzle23 9476 2eluzge1 9481 eluz2b1 9505 nn01to3 9519 nn0ge2m1nnALT 9520 ige2m1fz 10005 fzctr 10025 fzo0to2pr 10110 fzo0to42pr 10112 qbtwnre 10149 2tnp1ge0ge0 10193 flhalf 10194 m1modge3gt1 10263 q2txmodxeq0 10276 sq1 10505 expnass 10517 sqrecapd 10548 sqoddm1div8 10564 bcn2m1 10636 bcn2p1 10637 4bc2eq6 10641 resqrexlemcalc1 10907 resqrexlemnmsq 10910 resqrexlemcvg 10912 resqrexlemglsq 10915 resqrexlemga 10916 resqrexlemsqa 10917 efgt0 11574 tanval3ap 11604 cos01bnd 11648 cos01gt0 11652 egt2lt3 11669 zeo3 11751 odd2np1 11756 even2n 11757 oddm1even 11758 oddp1even 11759 oexpneg 11760 2tp1odd 11767 2teven 11770 evend2 11772 oddp1d2 11773 ltoddhalfle 11776 opoe 11778 omoe 11779 opeo 11780 omeo 11781 m1expo 11783 m1exp1 11784 nn0o1gt2 11788 nn0o 11790 z0even 11794 n2dvds1 11795 z2even 11797 n2dvds3 11798 z4even 11799 4dvdseven 11800 flodddiv4 11817 6gcd4e2 11870 3lcm2e6woprm 11954 isprm3 11986 prmind2 11988 dvdsnprmd 11993 prm2orodd 11994 2prm 11995 3prm 11996 oddprmge3 12002 divgcdodd 12008 pw2dvds 12031 sqrt2irraplemnn 12044 oddennn 12104 evenennn 12105 unennn 12109 exmidunben 12138 sincos6thpi 13134 rpcxpsqrtth 13221 2logb9irr 13259 2logb9irrALT 13262 sqrt2cxp2logb9e3 13263 2logb9irrap 13265 ex-fl 13272 ex-dvds 13277 cvgcmp2nlemabs 13574 trilpolemlt1 13583 apdifflemr 13589 apdiff 13590 |
Copyright terms: Public domain | W3C validator |