ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge2m1nnALT GIF version

Theorem nn0ge2m1nnALT 9566
Description: Alternate proof of nn0ge2m1nn 9184: If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. This version is proved using eluz2 9482, a theorem for upper sets of integers, which are defined later than the positive and nonnegative integers. This proof is, however, much shorter than the proof of nn0ge2m1nn 9184. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
nn0ge2m1nnALT ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)

Proof of Theorem nn0ge2m1nnALT
StepHypRef Expression
1 2z 9229 . . . 4 2 ∈ ℤ
21a1i 9 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ∈ ℤ)
3 nn0z 9221 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
43adantr 274 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ ℤ)
5 simpr 109 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 2 ≤ 𝑁)
6 eluz2 9482 . . 3 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
72, 4, 5, 6syl3anbrc 1176 . 2 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → 𝑁 ∈ (ℤ‘2))
8 uz2m1nn 9553 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℕ)
97, 8syl 14 1 ((𝑁 ∈ ℕ0 ∧ 2 ≤ 𝑁) → (𝑁 − 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141   class class class wbr 3987  cfv 5196  (class class class)co 5851  1c1 7764  cle 7944  cmin 8079  cn 8867  2c2 8918  0cn0 9124  cz 9201  cuz 9476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7854  ax-resscn 7855  ax-1cn 7856  ax-1re 7857  ax-icn 7858  ax-addcl 7859  ax-addrcl 7860  ax-mulcl 7861  ax-addcom 7863  ax-addass 7865  ax-distr 7867  ax-i2m1 7868  ax-0lt1 7869  ax-0id 7871  ax-rnegex 7872  ax-cnre 7874  ax-pre-ltirr 7875  ax-pre-ltwlin 7876  ax-pre-lttrn 7877  ax-pre-ltadd 7879
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7945  df-mnf 7946  df-xr 7947  df-ltxr 7948  df-le 7949  df-sub 8081  df-neg 8082  df-inn 8868  df-2 8926  df-n0 9125  df-z 9202  df-uz 9477
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator