ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnm1 Unicode version

Theorem nnm1 6671
Description: Multiply an element of  om by  1o. (Contributed by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
nnm1  |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )

Proof of Theorem nnm1
StepHypRef Expression
1 df-1o 6562 . . 3  |-  1o  =  suc  (/)
21oveq2i 6012 . 2  |-  ( A  .o  1o )  =  ( A  .o  suc  (/) )
3 peano1 4686 . . . 4  |-  (/)  e.  om
4 nnmsuc 6623 . . . 4  |-  ( ( A  e.  om  /\  (/) 
e.  om )  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
53, 4mpan2 425 . . 3  |-  ( A  e.  om  ->  ( A  .o  suc  (/) )  =  ( ( A  .o  (/) )  +o  A ) )
6 nnm0 6621 . . . 4  |-  ( A  e.  om  ->  ( A  .o  (/) )  =  (/) )
76oveq1d 6016 . . 3  |-  ( A  e.  om  ->  (
( A  .o  (/) )  +o  A )  =  (
(/)  +o  A )
)
8 nna0r 6624 . . 3  |-  ( A  e.  om  ->  ( (/) 
+o  A )  =  A )
95, 7, 83eqtrd 2266 . 2  |-  ( A  e.  om  ->  ( A  .o  suc  (/) )  =  A )
102, 9eqtrid 2274 1  |-  ( A  e.  om  ->  ( A  .o  1o )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   (/)c0 3491   suc csuc 4456   omcom 4682  (class class class)co 6001   1oc1o 6555    +o coa 6559    .o comu 6560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-oadd 6566  df-omul 6567
This theorem is referenced by:  nnm2  6672  mulidpi  7505  archnqq  7604  nq0a0  7644  nq02m  7652
  Copyright terms: Public domain W3C validator