ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnd Unicode version

Theorem peano2nnd 9024
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnred.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
peano2nnd  |-  ( ph  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nnd
StepHypRef Expression
1 nnred.1 . 2  |-  ( ph  ->  A  e.  NN )
2 peano2nn 9021 . 2  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
31, 2syl 14 1  |-  ( ph  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167  (class class class)co 5925   1c1 7899    + caddc 7901   NNcn 9009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4152  ax-cnex 7989  ax-resscn 7990  ax-1re 7992  ax-addrcl 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-inn 9010
This theorem is referenced by:  exp3vallem  10651  bcpasc  10877  caucvgre  11165  resqrexlemdecn  11196  cvgratnnlemmn  11709  cvgratnnlemseq  11710  cvgratnnlemabsle  11711  eftlub  11874  eirraplem  11961  infpnlem1  12555  infpnlem2  12556  1arith  12563  oddennn  12636  exmidunben  12670  nninfdclemp1  12694  nninfdclemlt  12695  perfectlem1  15343  perfectlem2  15344  lgsdilem2  15385  cvgcmp2nlemabs  15789  trilpolemeq1  15797  trilpolemlt1  15798  nconstwlpolemgt0  15821
  Copyright terms: Public domain W3C validator