ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnd Unicode version

Theorem peano2nnd 9005
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnred.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
peano2nnd  |-  ( ph  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nnd
StepHypRef Expression
1 nnred.1 . 2  |-  ( ph  ->  A  e.  NN )
2 peano2nn 9002 . 2  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
31, 2syl 14 1  |-  ( ph  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167  (class class class)co 5922   1c1 7880    + caddc 7882   NNcn 8990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-sep 4151  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-inn 8991
This theorem is referenced by:  exp3vallem  10632  bcpasc  10858  caucvgre  11146  resqrexlemdecn  11177  cvgratnnlemmn  11690  cvgratnnlemseq  11691  cvgratnnlemabsle  11692  eftlub  11855  eirraplem  11942  infpnlem1  12528  infpnlem2  12529  1arith  12536  oddennn  12609  exmidunben  12643  nninfdclemp1  12667  nninfdclemlt  12668  perfectlem1  15235  perfectlem2  15236  lgsdilem2  15277  cvgcmp2nlemabs  15676  trilpolemeq1  15684  trilpolemlt1  15685  nconstwlpolemgt0  15708
  Copyright terms: Public domain W3C validator