ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnd Unicode version

Theorem peano2nnd 8934
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnred.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
peano2nnd  |-  ( ph  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nnd
StepHypRef Expression
1 nnred.1 . 2  |-  ( ph  ->  A  e.  NN )
2 peano2nn 8931 . 2  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
31, 2syl 14 1  |-  ( ph  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148  (class class class)co 5875   1c1 7812    + caddc 7814   NNcn 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4122  ax-cnex 7902  ax-resscn 7903  ax-1re 7905  ax-addrcl 7908
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-inn 8920
This theorem is referenced by:  exp3vallem  10521  bcpasc  10746  caucvgre  10990  resqrexlemdecn  11021  cvgratnnlemmn  11533  cvgratnnlemseq  11534  cvgratnnlemabsle  11535  eftlub  11698  eirraplem  11784  infpnlem1  12357  infpnlem2  12358  1arith  12365  oddennn  12393  exmidunben  12427  nninfdclemp1  12451  nninfdclemlt  12452  lgsdilem2  14440  cvgcmp2nlemabs  14783  trilpolemeq1  14791  trilpolemlt1  14792  nconstwlpolemgt0  14814
  Copyright terms: Public domain W3C validator