ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnd Unicode version

Theorem peano2nnd 8880
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnred.1  |-  ( ph  ->  A  e.  NN )
Assertion
Ref Expression
peano2nnd  |-  ( ph  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nnd
StepHypRef Expression
1 nnred.1 . 2  |-  ( ph  ->  A  e.  NN )
2 peano2nn 8877 . 2  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
31, 2syl 14 1  |-  ( ph  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2141  (class class class)co 5850   1c1 7762    + caddc 7764   NNcn 8865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4105  ax-cnex 7852  ax-resscn 7853  ax-1re 7855  ax-addrcl 7858
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-iota 5158  df-fv 5204  df-ov 5853  df-inn 8866
This theorem is referenced by:  exp3vallem  10464  bcpasc  10687  caucvgre  10932  resqrexlemdecn  10963  cvgratnnlemmn  11475  cvgratnnlemseq  11476  cvgratnnlemabsle  11477  eftlub  11640  eirraplem  11726  infpnlem1  12298  infpnlem2  12299  1arith  12306  oddennn  12334  exmidunben  12368  nninfdclemp1  12392  nninfdclemlt  12393  lgsdilem2  13690  cvgcmp2nlemabs  14024  trilpolemeq1  14032  trilpolemlt1  14033  nconstwlpolemgt0  14055
  Copyright terms: Public domain W3C validator