ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle Unicode version

Theorem cvgratnnlemabsle 11328
Description: Lemma for cvgratnn 11332. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemabsle  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
21nnzd 9196 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32peano2zd 9200 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4 cvgratnn.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9359 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
73, 6fzfigd 10235 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
8 fveq2 5429 . . . . . . 7  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
98eleq1d 2209 . . . . . 6  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
10 cvgratnn.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
1110ralrimiva 2508 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1211adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
13 elfzelz 9837 . . . . . . . 8  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
1413adantl 275 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
15 0red 7791 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  e.  RR )
161peano2nnd 8759 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  NN )
1716adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  NN )
1817nnred 8757 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
1914zred 9197 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
2016nngt0d 8788 . . . . . . . . 9  |-  ( ph  ->  0  <  ( M  +  1 ) )
2120adantr 274 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  ( M  +  1 ) )
22 elfzle1 9838 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
2322adantl 275 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
2415, 18, 19, 21, 23ltletrd 8209 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  i )
25 elnnz 9088 . . . . . . 7  |-  ( i  e.  NN  <->  ( i  e.  ZZ  /\  0  < 
i ) )
2614, 24, 25sylanbrc 414 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  NN )
279, 12, 26rspcdva 2798 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  i )  e.  CC )
287, 27fsumcl 11201 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i
)  e.  CC )
2928abscld 10985 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  e.  RR )
3027abscld 10985 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  e.  RR )
317, 30fsumrecl 11202 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  e.  RR )
32 fveq2 5429 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
3332eleq1d 2209 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3433, 11, 1rspcdva 2798 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3534adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  M )  e.  CC )
3635abscld 10985 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  M ) )  e.  RR )
37 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3837adantr 274 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
392adantr 274 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  ZZ )
4014, 39zsubcld 9202 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
411adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  NN )
4241nnred 8757 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
4342lep1d 8713 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
4442, 18, 19, 43, 23letrd 7910 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
4519, 42subge0d 8321 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
0  <_  ( i  -  M )  <->  M  <_  i ) )
4644, 45mpbird 166 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( i  -  M
) )
47 elnn0z 9091 . . . . . . 7  |-  ( ( i  -  M )  e.  NN0  <->  ( ( i  -  M )  e.  ZZ  /\  0  <_ 
( i  -  M
) ) )
4840, 46, 47sylanbrc 414 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
4938, 48reexpcld 10472 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
5036, 49remulcld 7820 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
517, 50fsumrecl 11202 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
527, 27fsumabs 11266 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( abs `  ( F `  i )
) )
53 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
5453adantr 274 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  <  1 )
55 cvgratnn.gt0 . . . . . 6  |-  ( ph  ->  0  <  A )
5655adantr 274 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  A )
5710adantlr 469 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
58 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
5958adantlr 469 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
60 eluz2 9356 . . . . . 6  |-  ( i  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  i  e.  ZZ  /\  M  <_ 
i ) )
6139, 14, 44, 60syl3anbrc 1166 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ( ZZ>= `  M )
)
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11326 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
637, 30, 50, 62fsumle 11264 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6429, 31, 51, 52, 63letrd 7910 . 2  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6534abscld 10985 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
6665recnd 7818 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
6738recnd 7818 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
6867, 48expcld 10455 . . 3  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  CC )
697, 66, 68fsummulc2 11249 . 2  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  = 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
7064, 69breqtrrd 3964 1  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481   A.wral 2417   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   RRcr 7643   0cc0 7644   1c1 7645    + caddc 7647    x. cmul 7649    < clt 7824    <_ cle 7825    - cmin 7957   NNcn 8744   NN0cn0 9001   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821   ^cexp 10323   abscabs 10801   sum_csu 11154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-ihash 10554  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155
This theorem is referenced by:  cvgratnnlemrate  11331
  Copyright terms: Public domain W3C validator