ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle Unicode version

Theorem cvgratnnlemabsle 11670
Description: Lemma for cvgratnn 11674. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemabsle  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
21nnzd 9438 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32peano2zd 9442 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4 cvgratnn.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9601 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
73, 6fzfigd 10502 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
8 fveq2 5554 . . . . . . 7  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
98eleq1d 2262 . . . . . 6  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
10 cvgratnn.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
1110ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
13 elfzelz 10091 . . . . . . . 8  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
1413adantl 277 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
15 0red 8020 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  e.  RR )
161peano2nnd 8997 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  NN )
1716adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  NN )
1817nnred 8995 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
1914zred 9439 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
2016nngt0d 9026 . . . . . . . . 9  |-  ( ph  ->  0  <  ( M  +  1 ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  ( M  +  1 ) )
22 elfzle1 10093 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
2322adantl 277 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
2415, 18, 19, 21, 23ltletrd 8442 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  i )
25 elnnz 9327 . . . . . . 7  |-  ( i  e.  NN  <->  ( i  e.  ZZ  /\  0  < 
i ) )
2614, 24, 25sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  NN )
279, 12, 26rspcdva 2869 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  i )  e.  CC )
287, 27fsumcl 11543 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i
)  e.  CC )
2928abscld 11325 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  e.  RR )
3027abscld 11325 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  e.  RR )
317, 30fsumrecl 11544 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  e.  RR )
32 fveq2 5554 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
3332eleq1d 2262 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3433, 11, 1rspcdva 2869 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3534adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  M )  e.  CC )
3635abscld 11325 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  M ) )  e.  RR )
37 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3837adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  ZZ )
4014, 39zsubcld 9444 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
411adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  NN )
4241nnred 8995 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
4342lep1d 8950 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
4442, 18, 19, 43, 23letrd 8143 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
4519, 42subge0d 8554 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
0  <_  ( i  -  M )  <->  M  <_  i ) )
4644, 45mpbird 167 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( i  -  M
) )
47 elnn0z 9330 . . . . . . 7  |-  ( ( i  -  M )  e.  NN0  <->  ( ( i  -  M )  e.  ZZ  /\  0  <_ 
( i  -  M
) ) )
4840, 46, 47sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
4938, 48reexpcld 10761 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
5036, 49remulcld 8050 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
517, 50fsumrecl 11544 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
527, 27fsumabs 11608 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( abs `  ( F `  i )
) )
53 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
5453adantr 276 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  <  1 )
55 cvgratnn.gt0 . . . . . 6  |-  ( ph  ->  0  <  A )
5655adantr 276 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  A )
5710adantlr 477 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
58 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
5958adantlr 477 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
60 eluz2 9598 . . . . . 6  |-  ( i  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  i  e.  ZZ  /\  M  <_ 
i ) )
6139, 14, 44, 60syl3anbrc 1183 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ( ZZ>= `  M )
)
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11668 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
637, 30, 50, 62fsumle 11606 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6429, 31, 51, 52, 63letrd 8143 . 2  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6534abscld 11325 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
6665recnd 8048 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
6738recnd 8048 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
6867, 48expcld 10744 . . 3  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  CC )
697, 66, 68fsummulc2 11591 . 2  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  = 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
7064, 69breqtrrd 4057 1  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    x. cmul 7877    < clt 8054    <_ cle 8055    - cmin 8190   NNcn 8982   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074   ^cexp 10609   abscabs 11141   sum_csu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  cvgratnnlemrate  11673
  Copyright terms: Public domain W3C validator