ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle Unicode version

Theorem cvgratnnlemabsle 11871
Description: Lemma for cvgratnn 11875. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemabsle  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
21nnzd 9496 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32peano2zd 9500 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4 cvgratnn.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9659 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
73, 6fzfigd 10578 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
8 fveq2 5578 . . . . . . 7  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
98eleq1d 2274 . . . . . 6  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
10 cvgratnn.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
1110ralrimiva 2579 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
13 elfzelz 10149 . . . . . . . 8  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
1413adantl 277 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
15 0red 8075 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  e.  RR )
161peano2nnd 9053 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  NN )
1716adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  NN )
1817nnred 9051 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
1914zred 9497 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
2016nngt0d 9082 . . . . . . . . 9  |-  ( ph  ->  0  <  ( M  +  1 ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  ( M  +  1 ) )
22 elfzle1 10151 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
2322adantl 277 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
2415, 18, 19, 21, 23ltletrd 8498 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  i )
25 elnnz 9384 . . . . . . 7  |-  ( i  e.  NN  <->  ( i  e.  ZZ  /\  0  < 
i ) )
2614, 24, 25sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  NN )
279, 12, 26rspcdva 2882 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  i )  e.  CC )
287, 27fsumcl 11744 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i
)  e.  CC )
2928abscld 11525 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  e.  RR )
3027abscld 11525 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  e.  RR )
317, 30fsumrecl 11745 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  e.  RR )
32 fveq2 5578 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
3332eleq1d 2274 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3433, 11, 1rspcdva 2882 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3534adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  M )  e.  CC )
3635abscld 11525 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  M ) )  e.  RR )
37 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3837adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  ZZ )
4014, 39zsubcld 9502 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
411adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  NN )
4241nnred 9051 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
4342lep1d 9006 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
4442, 18, 19, 43, 23letrd 8198 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
4519, 42subge0d 8610 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
0  <_  ( i  -  M )  <->  M  <_  i ) )
4644, 45mpbird 167 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( i  -  M
) )
47 elnn0z 9387 . . . . . . 7  |-  ( ( i  -  M )  e.  NN0  <->  ( ( i  -  M )  e.  ZZ  /\  0  <_ 
( i  -  M
) ) )
4840, 46, 47sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
4938, 48reexpcld 10837 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
5036, 49remulcld 8105 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
517, 50fsumrecl 11745 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
527, 27fsumabs 11809 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( abs `  ( F `  i )
) )
53 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
5453adantr 276 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  <  1 )
55 cvgratnn.gt0 . . . . . 6  |-  ( ph  ->  0  <  A )
5655adantr 276 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  A )
5710adantlr 477 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
58 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
5958adantlr 477 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
60 eluz2 9656 . . . . . 6  |-  ( i  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  i  e.  ZZ  /\  M  <_ 
i ) )
6139, 14, 44, 60syl3anbrc 1184 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ( ZZ>= `  M )
)
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11869 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
637, 30, 50, 62fsumle 11807 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6429, 31, 51, 52, 63letrd 8198 . 2  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6534abscld 11525 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
6665recnd 8103 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
6738recnd 8103 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
6867, 48expcld 10820 . . 3  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  CC )
697, 66, 68fsummulc2 11792 . 2  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  = 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
7064, 69breqtrrd 4073 1  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   CCcc 7925   RRcr 7926   0cc0 7927   1c1 7928    + caddc 7930    x. cmul 7932    < clt 8109    <_ cle 8110    - cmin 8245   NNcn 9038   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   ...cfz 10132   ^cexp 10685   abscabs 11341   sum_csu 11697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-ico 10018  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-ihash 10923  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698
This theorem is referenced by:  cvgratnnlemrate  11874
  Copyright terms: Public domain W3C validator