ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemabsle Unicode version

Theorem cvgratnnlemabsle 11692
Description: Lemma for cvgratnn 11696. (Contributed by Jim Kingdon, 21-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3  |-  ( ph  ->  A  e.  RR )
cvgratnn.4  |-  ( ph  ->  A  <  1 )
cvgratnn.gt0  |-  ( ph  ->  0  <  A )
cvgratnn.6  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
cvgratnn.7  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
cvgratnn.m  |-  ( ph  ->  M  e.  NN )
cvgratnn.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgratnnlemabsle  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Distinct variable groups:    A, k    k, F    k, N    ph, k    i, F, k    i, M, k   
i, N    ph, i
Allowed substitution hint:    A( i)

Proof of Theorem cvgratnnlemabsle
StepHypRef Expression
1 cvgratnn.m . . . . . . . 8  |-  ( ph  ->  M  e.  NN )
21nnzd 9447 . . . . . . 7  |-  ( ph  ->  M  e.  ZZ )
32peano2zd 9451 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4 cvgratnn.n . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
5 eluzelz 9610 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
64, 5syl 14 . . . . . 6  |-  ( ph  ->  N  e.  ZZ )
73, 6fzfigd 10523 . . . . 5  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
8 fveq2 5558 . . . . . . 7  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
98eleq1d 2265 . . . . . 6  |-  ( k  =  i  ->  (
( F `  k
)  e.  CC  <->  ( F `  i )  e.  CC ) )
10 cvgratnn.6 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  CC )
1110ralrimiva 2570 . . . . . . 7  |-  ( ph  ->  A. k  e.  NN  ( F `  k )  e.  CC )
1211adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A. k  e.  NN  ( F `  k )  e.  CC )
13 elfzelz 10100 . . . . . . . 8  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  i  e.  ZZ )
1413adantl 277 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ZZ )
15 0red 8027 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  e.  RR )
161peano2nnd 9005 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  NN )
1716adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  NN )
1817nnred 9003 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  e.  RR )
1914zred 9448 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  RR )
2016nngt0d 9034 . . . . . . . . 9  |-  ( ph  ->  0  <  ( M  +  1 ) )
2120adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  ( M  +  1 ) )
22 elfzle1 10102 . . . . . . . . 9  |-  ( i  e.  ( ( M  +  1 ) ... N )  ->  ( M  +  1 )  <_  i )
2322adantl 277 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( M  +  1 )  <_  i )
2415, 18, 19, 21, 23ltletrd 8450 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  i )
25 elnnz 9336 . . . . . . 7  |-  ( i  e.  NN  <->  ( i  e.  ZZ  /\  0  < 
i ) )
2614, 24, 25sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  NN )
279, 12, 26rspcdva 2873 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  i )  e.  CC )
287, 27fsumcl 11565 . . . 4  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i
)  e.  CC )
2928abscld 11346 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  e.  RR )
3027abscld 11346 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  e.  RR )
317, 30fsumrecl 11566 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  e.  RR )
32 fveq2 5558 . . . . . . . . 9  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
3332eleq1d 2265 . . . . . . . 8  |-  ( k  =  M  ->  (
( F `  k
)  e.  CC  <->  ( F `  M )  e.  CC ) )
3433, 11, 1rspcdva 2873 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  CC )
3534adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  M )  e.  CC )
3635abscld 11346 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  M ) )  e.  RR )
37 cvgratnn.3 . . . . . . 7  |-  ( ph  ->  A  e.  RR )
3837adantr 276 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  RR )
392adantr 276 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  ZZ )
4014, 39zsubcld 9453 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  ZZ )
411adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  NN )
4241nnred 9003 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  e.  RR )
4342lep1d 8958 . . . . . . . . 9  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  ( M  +  1 ) )
4442, 18, 19, 43, 23letrd 8150 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  M  <_  i )
4519, 42subge0d 8562 . . . . . . . 8  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
0  <_  ( i  -  M )  <->  M  <_  i ) )
4644, 45mpbird 167 . . . . . . 7  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( i  -  M
) )
47 elnn0z 9339 . . . . . . 7  |-  ( ( i  -  M )  e.  NN0  <->  ( ( i  -  M )  e.  ZZ  /\  0  <_ 
( i  -  M
) ) )
4840, 46, 47sylanbrc 417 . . . . . 6  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
i  -  M )  e.  NN0 )
4938, 48reexpcld 10782 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  RR )
5036, 49remulcld 8057 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
517, 50fsumrecl 11566 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) )  e.  RR )
527, 27fsumabs 11630 . . 3  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( abs `  ( F `  i )
) )
53 cvgratnn.4 . . . . . 6  |-  ( ph  ->  A  <  1 )
5453adantr 276 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  <  1 )
55 cvgratnn.gt0 . . . . . 6  |-  ( ph  ->  0  <  A )
5655adantr 276 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <  A )
5710adantlr 477 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( F `  k )  e.  CC )
58 cvgratnn.7 . . . . . 6  |-  ( (
ph  /\  k  e.  NN )  ->  ( abs `  ( F `  (
k  +  1 ) ) )  <_  ( A  x.  ( abs `  ( F `  k
) ) ) )
5958adantlr 477 . . . . 5  |-  ( ( ( ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  /\  k  e.  NN )  ->  ( abs `  ( F `  ( k  +  1 ) ) )  <_ 
( A  x.  ( abs `  ( F `  k ) ) ) )
60 eluz2 9607 . . . . . 6  |-  ( i  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  i  e.  ZZ  /\  M  <_ 
i ) )
6139, 14, 44, 60syl3anbrc 1183 . . . . 5  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  i  e.  ( ZZ>= `  M )
)
6238, 54, 56, 57, 59, 41, 61cvgratnnlemmn 11690 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( abs `  ( F `  i ) )  <_ 
( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
637, 30, 50, 62fsumle 11628 . . 3  |-  ( ph  -> 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( abs `  ( F `  i )
)  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6429, 31, 51, 52, 63letrd 8150 . 2  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( ( abs `  ( F `  M
) )  x.  ( A ^ ( i  -  M ) ) ) )
6534abscld 11346 . . . 4  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  RR )
6665recnd 8055 . . 3  |-  ( ph  ->  ( abs `  ( F `  M )
)  e.  CC )
6738recnd 8055 . . . 4  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  A  e.  CC )
6867, 48expcld 10765 . . 3  |-  ( (
ph  /\  i  e.  ( ( M  + 
1 ) ... N
) )  ->  ( A ^ ( i  -  M ) )  e.  CC )
697, 66, 68fsummulc2 11613 . 2  |-  ( ph  ->  ( ( abs `  ( F `  M )
)  x.  sum_ i  e.  ( ( M  + 
1 ) ... N
) ( A ^
( i  -  M
) ) )  = 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( ( abs `  ( F `  M )
)  x.  ( A ^ ( i  -  M ) ) ) )
7064, 69breqtrrd 4061 1  |-  ( ph  ->  ( abs `  sum_ i  e.  ( ( M  +  1 ) ... N ) ( F `  i ) )  <_  ( ( abs `  ( F `  M ) )  x. 
sum_ i  e.  ( ( M  +  1 ) ... N ) ( A ^ (
i  -  M ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197   NNcn 8990   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083   ^cexp 10630   abscabs 11162   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  cvgratnnlemrate  11695
  Copyright terms: Public domain W3C validator