| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nnd | GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| peano2nnd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | peano2nn 9050 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 (class class class)co 5946 1c1 7928 + caddc 7930 ℕcn 9038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 |
| This theorem is referenced by: exp3vallem 10687 bcpasc 10913 caucvgre 11325 resqrexlemdecn 11356 cvgratnnlemmn 11869 cvgratnnlemseq 11870 cvgratnnlemabsle 11871 eftlub 12034 eirraplem 12121 infpnlem1 12715 infpnlem2 12716 1arith 12723 oddennn 12796 exmidunben 12830 nninfdclemp1 12854 nninfdclemlt 12855 perfectlem1 15504 perfectlem2 15505 lgsdilem2 15546 cvgcmp2nlemabs 16008 trilpolemeq1 16016 trilpolemlt1 16017 nconstwlpolemgt0 16040 |
| Copyright terms: Public domain | W3C validator |