![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > peano2nnd | GIF version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
peano2nnd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | peano2nn 8961 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 (class class class)co 5896 1c1 7842 + caddc 7844 ℕcn 8949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-addrcl 7938 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5196 df-fv 5243 df-ov 5899 df-inn 8950 |
This theorem is referenced by: exp3vallem 10552 bcpasc 10778 caucvgre 11022 resqrexlemdecn 11053 cvgratnnlemmn 11565 cvgratnnlemseq 11566 cvgratnnlemabsle 11567 eftlub 11730 eirraplem 11816 infpnlem1 12391 infpnlem2 12392 1arith 12399 oddennn 12443 exmidunben 12477 nninfdclemp1 12501 nninfdclemlt 12502 lgsdilem2 14895 cvgcmp2nlemabs 15239 trilpolemeq1 15247 trilpolemlt1 15248 nconstwlpolemgt0 15271 |
Copyright terms: Public domain | W3C validator |