ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnd GIF version

Theorem peano2nnd 9051
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnred.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
peano2nnd (𝜑 → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nnd
StepHypRef Expression
1 nnred.1 . 2 (𝜑𝐴 ∈ ℕ)
2 peano2nn 9048 . 2 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
31, 2syl 14 1 (𝜑 → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2176  (class class class)co 5944  1c1 7926   + caddc 7928  cn 9036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-sep 4162  ax-cnex 8016  ax-resscn 8017  ax-1re 8019  ax-addrcl 8022
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-inn 9037
This theorem is referenced by:  exp3vallem  10685  bcpasc  10911  caucvgre  11292  resqrexlemdecn  11323  cvgratnnlemmn  11836  cvgratnnlemseq  11837  cvgratnnlemabsle  11838  eftlub  12001  eirraplem  12088  infpnlem1  12682  infpnlem2  12683  1arith  12690  oddennn  12763  exmidunben  12797  nninfdclemp1  12821  nninfdclemlt  12822  perfectlem1  15471  perfectlem2  15472  lgsdilem2  15513  cvgcmp2nlemabs  15971  trilpolemeq1  15979  trilpolemlt1  15980  nconstwlpolemgt0  16003
  Copyright terms: Public domain W3C validator