| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nnd | GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| peano2nnd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | peano2nn 9048 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 (class class class)co 5944 1c1 7926 + caddc 7928 ℕcn 9036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 |
| This theorem is referenced by: exp3vallem 10685 bcpasc 10911 caucvgre 11292 resqrexlemdecn 11323 cvgratnnlemmn 11836 cvgratnnlemseq 11837 cvgratnnlemabsle 11838 eftlub 12001 eirraplem 12088 infpnlem1 12682 infpnlem2 12683 1arith 12690 oddennn 12763 exmidunben 12797 nninfdclemp1 12821 nninfdclemlt 12822 perfectlem1 15471 perfectlem2 15472 lgsdilem2 15513 cvgcmp2nlemabs 15971 trilpolemeq1 15979 trilpolemlt1 15980 nconstwlpolemgt0 16003 |
| Copyright terms: Public domain | W3C validator |