ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nnd GIF version

Theorem peano2nnd 8893
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
nnred.1 (𝜑𝐴 ∈ ℕ)
Assertion
Ref Expression
peano2nnd (𝜑 → (𝐴 + 1) ∈ ℕ)

Proof of Theorem peano2nnd
StepHypRef Expression
1 nnred.1 . 2 (𝜑𝐴 ∈ ℕ)
2 peano2nn 8890 . 2 (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
31, 2syl 14 1 (𝜑 → (𝐴 + 1) ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  (class class class)co 5853  1c1 7775   + caddc 7777  cn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879
This theorem is referenced by:  exp3vallem  10477  bcpasc  10700  caucvgre  10945  resqrexlemdecn  10976  cvgratnnlemmn  11488  cvgratnnlemseq  11489  cvgratnnlemabsle  11490  eftlub  11653  eirraplem  11739  infpnlem1  12311  infpnlem2  12312  1arith  12319  oddennn  12347  exmidunben  12381  nninfdclemp1  12405  nninfdclemlt  12406  lgsdilem2  13731  cvgcmp2nlemabs  14064  trilpolemeq1  14072  trilpolemlt1  14073  nconstwlpolemgt0  14095
  Copyright terms: Public domain W3C validator