| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nnd | GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| peano2nnd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | peano2nn 9083 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 (class class class)co 5967 1c1 7961 + caddc 7963 ℕcn 9071 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: exp3vallem 10722 bcpasc 10948 caucvgre 11407 resqrexlemdecn 11438 cvgratnnlemmn 11951 cvgratnnlemseq 11952 cvgratnnlemabsle 11953 eftlub 12116 eirraplem 12203 infpnlem1 12797 infpnlem2 12798 1arith 12805 oddennn 12878 exmidunben 12912 nninfdclemp1 12936 nninfdclemlt 12937 perfectlem1 15586 perfectlem2 15587 lgsdilem2 15628 cvgcmp2nlemabs 16173 trilpolemeq1 16181 trilpolemlt1 16182 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |