Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2nnd | GIF version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Ref | Expression |
---|---|
peano2nnd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | peano2nn 8865 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2136 (class class class)co 5841 1c1 7750 + caddc 7752 ℕcn 8853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4099 ax-cnex 7840 ax-resscn 7841 ax-1re 7843 ax-addrcl 7846 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-inn 8854 |
This theorem is referenced by: exp3vallem 10452 bcpasc 10675 caucvgre 10919 resqrexlemdecn 10950 cvgratnnlemmn 11462 cvgratnnlemseq 11463 cvgratnnlemabsle 11464 eftlub 11627 eirraplem 11713 infpnlem1 12285 infpnlem2 12286 1arith 12293 oddennn 12321 exmidunben 12355 nninfdclemp1 12379 nninfdclemlt 12380 lgsdilem2 13537 cvgcmp2nlemabs 13871 trilpolemeq1 13879 trilpolemlt1 13880 nconstwlpolemgt0 13902 |
Copyright terms: Public domain | W3C validator |