| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nnd | GIF version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| nnred.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| Ref | Expression |
|---|---|
| peano2nnd | ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnred.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | peano2nn 9122 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 1) ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 (class class class)co 6001 1c1 8000 + caddc 8002 ℕcn 9110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 |
| This theorem is referenced by: exp3vallem 10762 bcpasc 10988 caucvgre 11492 resqrexlemdecn 11523 cvgratnnlemmn 12036 cvgratnnlemseq 12037 cvgratnnlemabsle 12038 eftlub 12201 eirraplem 12288 infpnlem1 12882 infpnlem2 12883 1arith 12890 oddennn 12963 exmidunben 12997 nninfdclemp1 13021 nninfdclemlt 13022 perfectlem1 15673 perfectlem2 15674 lgsdilem2 15715 cvgcmp2nlemabs 16400 trilpolemeq1 16408 trilpolemlt1 16409 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |