| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version | ||
| Description: Lemma for cvgcmp2n 15677.  The partial sums get closer to each other
as
         we go further out.  The proof proceeds by rewriting
          | 
| Ref | Expression | 
|---|---|
| cvgcmp2n.cl | 
 | 
| cvgcmp2n.ge0 | 
 | 
| cvgcmp2n.lt | 
 | 
| cvgcmp2nlemabs.m | 
 | 
| cvgcmp2nlemabs.n | 
 | 
| Ref | Expression | 
|---|---|
| cvgcmp2nlemabs | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2197 | 
. . . . . . . 8
 | |
| 2 | cvgcmp2nlemabs.m | 
. . . . . . . . . 10
 | |
| 3 | cvgcmp2nlemabs.n | 
. . . . . . . . . 10
 | |
| 4 | eluznn 9674 | 
. . . . . . . . . 10
 | |
| 5 | 2, 3, 4 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 6 | elnnuz 9638 | 
. . . . . . . . 9
 | |
| 7 | 5, 6 | sylib 122 | 
. . . . . . . 8
 | 
| 8 | elnnuz 9638 | 
. . . . . . . . 9
 | |
| 9 | cvgcmp2n.cl | 
. . . . . . . . . 10
 | |
| 10 | 9 | recnd 8055 | 
. . . . . . . . 9
 | 
| 11 | 8, 10 | sylan2br 288 | 
. . . . . . . 8
 | 
| 12 | 1, 7, 11 | fsum3ser 11562 | 
. . . . . . 7
 | 
| 13 | nnuz 9637 | 
. . . . . . . . 9
 | |
| 14 | 2, 13 | eleqtrdi 2289 | 
. . . . . . . 8
 | 
| 15 | 1, 14, 11 | fsum3ser 11562 | 
. . . . . . 7
 | 
| 16 | 12, 15 | oveq12d 5940 | 
. . . . . 6
 | 
| 17 | 2 | nnred 9003 | 
. . . . . . . . . . 11
 | 
| 18 | 17 | ltp1d 8957 | 
. . . . . . . . . 10
 | 
| 19 | fzdisj 10127 | 
. . . . . . . . . 10
 | |
| 20 | 18, 19 | syl 14 | 
. . . . . . . . 9
 | 
| 21 | eluzle 9613 | 
. . . . . . . . . . . 12
 | |
| 22 | 3, 21 | syl 14 | 
. . . . . . . . . . 11
 | 
| 23 | elfz1b 10165 | 
. . . . . . . . . . 11
 | |
| 24 | 2, 5, 22, 23 | syl3anbrc 1183 | 
. . . . . . . . . 10
 | 
| 25 | fzsplit 10126 | 
. . . . . . . . . 10
 | |
| 26 | 24, 25 | syl 14 | 
. . . . . . . . 9
 | 
| 27 | 1zzd 9353 | 
. . . . . . . . . 10
 | |
| 28 | 5 | nnzd 9447 | 
. . . . . . . . . 10
 | 
| 29 | 27, 28 | fzfigd 10523 | 
. . . . . . . . 9
 | 
| 30 | elfznn 10129 | 
. . . . . . . . . 10
 | |
| 31 | 30, 10 | sylan2 286 | 
. . . . . . . . 9
 | 
| 32 | 20, 26, 29, 31 | fsumsplit 11572 | 
. . . . . . . 8
 | 
| 33 | 32 | eqcomd 2202 | 
. . . . . . 7
 | 
| 34 | 29, 31 | fsumcl 11565 | 
. . . . . . . 8
 | 
| 35 | 2 | nnzd 9447 | 
. . . . . . . . . 10
 | 
| 36 | 27, 35 | fzfigd 10523 | 
. . . . . . . . 9
 | 
| 37 | elfznn 10129 | 
. . . . . . . . . 10
 | |
| 38 | 37, 10 | sylan2 286 | 
. . . . . . . . 9
 | 
| 39 | 36, 38 | fsumcl 11565 | 
. . . . . . . 8
 | 
| 40 | 35 | peano2zd 9451 | 
. . . . . . . . . 10
 | 
| 41 | 40, 28 | fzfigd 10523 | 
. . . . . . . . 9
 | 
| 42 | 2 | peano2nnd 9005 | 
. . . . . . . . . . 11
 | 
| 43 | elfzuz 10096 | 
. . . . . . . . . . 11
 | |
| 44 | eluznn 9674 | 
. . . . . . . . . . 11
 | |
| 45 | 42, 43, 44 | syl2an 289 | 
. . . . . . . . . 10
 | 
| 46 | 45, 10 | syldan 282 | 
. . . . . . . . 9
 | 
| 47 | 41, 46 | fsumcl 11565 | 
. . . . . . . 8
 | 
| 48 | 34, 39, 47 | subaddd 8355 | 
. . . . . . 7
 | 
| 49 | 33, 48 | mpbird 167 | 
. . . . . 6
 | 
| 50 | 16, 49 | eqtr3d 2231 | 
. . . . 5
 | 
| 51 | 45, 9 | syldan 282 | 
. . . . . 6
 | 
| 52 | 41, 51 | fsumrecl 11566 | 
. . . . 5
 | 
| 53 | 50, 52 | eqeltrd 2273 | 
. . . 4
 | 
| 54 | 42 | nnzd 9447 | 
. . . . . . 7
 | 
| 55 | 54, 28 | fzfigd 10523 | 
. . . . . 6
 | 
| 56 | cvgcmp2n.ge0 | 
. . . . . . 7
 | |
| 57 | 45, 56 | syldan 282 | 
. . . . . 6
 | 
| 58 | 55, 51, 57 | fsumge0 11624 | 
. . . . 5
 | 
| 59 | 58, 50 | breqtrrd 4061 | 
. . . 4
 | 
| 60 | 53, 59 | absidd 11332 | 
. . 3
 | 
| 61 | 60, 50 | eqtrd 2229 | 
. 2
 | 
| 62 | halfre 9204 | 
. . . . . . 7
 | |
| 63 | 62 | a1i 9 | 
. . . . . 6
 | 
| 64 | 42 | nnnn0d 9302 | 
. . . . . 6
 | 
| 65 | 63, 64 | reexpcld 10782 | 
. . . . 5
 | 
| 66 | 5 | peano2nnd 9005 | 
. . . . . . 7
 | 
| 67 | 66 | nnnn0d 9302 | 
. . . . . 6
 | 
| 68 | 63, 67 | reexpcld 10782 | 
. . . . 5
 | 
| 69 | 65, 68 | resubcld 8407 | 
. . . 4
 | 
| 70 | 1mhlfehlf 9209 | 
. . . . . 6
 | |
| 71 | 2rp 9733 | 
. . . . . . 7
 | |
| 72 | rpreccl 9755 | 
. . . . . . 7
 | |
| 73 | 71, 72 | ax-mp 5 | 
. . . . . 6
 | 
| 74 | 70, 73 | eqeltri 2269 | 
. . . . 5
 | 
| 75 | 74 | a1i 9 | 
. . . 4
 | 
| 76 | 69, 75 | rerpdivcld 9803 | 
. . 3
 | 
| 77 | 71 | a1i 9 | 
. . . . 5
 | 
| 78 | 2 | nnrpd 9769 | 
. . . . 5
 | 
| 79 | 77, 78 | rpdivcld 9789 | 
. . . 4
 | 
| 80 | 79 | rpred 9771 | 
. . 3
 | 
| 81 | 71 | a1i 9 | 
. . . . . . . . 9
 | 
| 82 | 45 | nnzd 9447 | 
. . . . . . . . 9
 | 
| 83 | 81, 82 | rpexpcld 10789 | 
. . . . . . . 8
 | 
| 84 | 83 | rprecred 9783 | 
. . . . . . 7
 | 
| 85 | cvgcmp2n.lt | 
. . . . . . . 8
 | |
| 86 | 45, 85 | syldan 282 | 
. . . . . . 7
 | 
| 87 | 41, 51, 84, 86 | fsumle 11628 | 
. . . . . 6
 | 
| 88 | 2cnd 9063 | 
. . . . . . . . 9
 | |
| 89 | 81 | rpap0d 9777 | 
. . . . . . . . 9
 | 
| 90 | 88, 89, 82 | exprecapd 10773 | 
. . . . . . . 8
 | 
| 91 | 90 | eqcomd 2202 | 
. . . . . . 7
 | 
| 92 | 91 | sumeq2dv 11533 | 
. . . . . 6
 | 
| 93 | 87, 92 | breqtrd 4059 | 
. . . . 5
 | 
| 94 | fzval3 10280 | 
. . . . . . 7
 | |
| 95 | 28, 94 | syl 14 | 
. . . . . 6
 | 
| 96 | 95 | sumeq1d 11531 | 
. . . . 5
 | 
| 97 | 93, 96 | breqtrd 4059 | 
. . . 4
 | 
| 98 | halfcn 9205 | 
. . . . . 6
 | |
| 99 | 98 | a1i 9 | 
. . . . 5
 | 
| 100 | 1re 8025 | 
. . . . . . 7
 | |
| 101 | halflt1 9208 | 
. . . . . . 7
 | |
| 102 | 62, 100, 101 | ltapii 8662 | 
. . . . . 6
 | 
| 103 | 102 | a1i 9 | 
. . . . 5
 | 
| 104 | eluzp1p1 9627 | 
. . . . . 6
 | |
| 105 | 3, 104 | syl 14 | 
. . . . 5
 | 
| 106 | 99, 103, 64, 105 | geosergap 11671 | 
. . . 4
 | 
| 107 | 97, 106 | breqtrd 4059 | 
. . 3
 | 
| 108 | 73 | a1i 9 | 
. . . . . . . 8
 | 
| 109 | 28 | peano2zd 9451 | 
. . . . . . . 8
 | 
| 110 | 108, 109 | rpexpcld 10789 | 
. . . . . . 7
 | 
| 111 | 110 | rpred 9771 | 
. . . . . 6
 | 
| 112 | 65, 111 | resubcld 8407 | 
. . . . 5
 | 
| 113 | 2 | nnrecred 9037 | 
. . . . 5
 | 
| 114 | 65, 110 | ltsubrpd 9804 | 
. . . . . 6
 | 
| 115 | 2cnd 9063 | 
. . . . . . . 8
 | |
| 116 | 77 | rpap0d 9777 | 
. . . . . . . 8
 | 
| 117 | 115, 116, 40 | exprecapd 10773 | 
. . . . . . 7
 | 
| 118 | 42 | nnred 9003 | 
. . . . . . . . 9
 | 
| 119 | 77, 40 | rpexpcld 10789 | 
. . . . . . . . . 10
 | 
| 120 | 119 | rpred 9771 | 
. . . . . . . . 9
 | 
| 121 | 2z 9354 | 
. . . . . . . . . . . 12
 | |
| 122 | uzid 9615 | 
. . . . . . . . . . . 12
 | |
| 123 | 121, 122 | ax-mp 5 | 
. . . . . . . . . . 11
 | 
| 124 | 123 | a1i 9 | 
. . . . . . . . . 10
 | 
| 125 | bernneq3 10754 | 
. . . . . . . . . 10
 | |
| 126 | 124, 64, 125 | syl2anc 411 | 
. . . . . . . . 9
 | 
| 127 | 17, 118, 120, 18, 126 | lttrd 8152 | 
. . . . . . . 8
 | 
| 128 | 78, 119 | ltrecd 9790 | 
. . . . . . . 8
 | 
| 129 | 127, 128 | mpbid 147 | 
. . . . . . 7
 | 
| 130 | 117, 129 | eqbrtrd 4055 | 
. . . . . 6
 | 
| 131 | 112, 65, 113, 114, 130 | lttrd 8152 | 
. . . . 5
 | 
| 132 | 112, 113, 77, 131 | ltmul1dd 9827 | 
. . . 4
 | 
| 133 | 70 | oveq2i 5933 | 
. . . . . 6
 | 
| 134 | 112 | recnd 8055 | 
. . . . . . 7
 | 
| 135 | 1cnd 8042 | 
. . . . . . 7
 | |
| 136 | 1ap0 8617 | 
. . . . . . . 8
 | |
| 137 | 136 | a1i 9 | 
. . . . . . 7
 | 
| 138 | 134, 135, 115, 137, 116 | divdivap2d 8850 | 
. . . . . 6
 | 
| 139 | 133, 138 | eqtrid 2241 | 
. . . . 5
 | 
| 140 | 134, 115 | mulcld 8047 | 
. . . . . 6
 | 
| 141 | 140 | div1d 8807 | 
. . . . 5
 | 
| 142 | 139, 141 | eqtrd 2229 | 
. . . 4
 | 
| 143 | 17 | recnd 8055 | 
. . . . 5
 | 
| 144 | 2 | nnap0d 9036 | 
. . . . 5
 | 
| 145 | 115, 143, 144 | divrecap2d 8821 | 
. . . 4
 | 
| 146 | 132, 142, 145 | 3brtr4d 4065 | 
. . 3
 | 
| 147 | 52, 76, 80, 107, 146 | lelttrd 8151 | 
. 2
 | 
| 148 | 61, 147 | eqbrtrd 4055 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-ico 9969 df-fz 10084 df-fzo 10218 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-sumdc 11519 | 
| This theorem is referenced by: cvgcmp2n 15677 | 
| Copyright terms: Public domain | W3C validator |