Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version |
Description: Lemma for cvgcmp2n 14065. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting as the sum of and a term which gets smaller as gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
Ref | Expression |
---|---|
cvgcmp2n.cl | |
cvgcmp2n.ge0 | |
cvgcmp2n.lt | |
cvgcmp2nlemabs.m | |
cvgcmp2nlemabs.n |
Ref | Expression |
---|---|
cvgcmp2nlemabs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2171 | . . . . . . . 8 | |
2 | cvgcmp2nlemabs.m | . . . . . . . . . 10 | |
3 | cvgcmp2nlemabs.n | . . . . . . . . . 10 | |
4 | eluznn 9559 | . . . . . . . . . 10 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . . . . . 9 |
6 | elnnuz 9523 | . . . . . . . . 9 | |
7 | 5, 6 | sylib 121 | . . . . . . . 8 |
8 | elnnuz 9523 | . . . . . . . . 9 | |
9 | cvgcmp2n.cl | . . . . . . . . . 10 | |
10 | 9 | recnd 7948 | . . . . . . . . 9 |
11 | 8, 10 | sylan2br 286 | . . . . . . . 8 |
12 | 1, 7, 11 | fsum3ser 11360 | . . . . . . 7 |
13 | nnuz 9522 | . . . . . . . . 9 | |
14 | 2, 13 | eleqtrdi 2263 | . . . . . . . 8 |
15 | 1, 14, 11 | fsum3ser 11360 | . . . . . . 7 |
16 | 12, 15 | oveq12d 5871 | . . . . . 6 |
17 | 2 | nnred 8891 | . . . . . . . . . . 11 |
18 | 17 | ltp1d 8846 | . . . . . . . . . 10 |
19 | fzdisj 10008 | . . . . . . . . . 10 | |
20 | 18, 19 | syl 14 | . . . . . . . . 9 |
21 | eluzle 9499 | . . . . . . . . . . . 12 | |
22 | 3, 21 | syl 14 | . . . . . . . . . . 11 |
23 | elfz1b 10046 | . . . . . . . . . . 11 | |
24 | 2, 5, 22, 23 | syl3anbrc 1176 | . . . . . . . . . 10 |
25 | fzsplit 10007 | . . . . . . . . . 10 | |
26 | 24, 25 | syl 14 | . . . . . . . . 9 |
27 | 1zzd 9239 | . . . . . . . . . 10 | |
28 | 5 | nnzd 9333 | . . . . . . . . . 10 |
29 | 27, 28 | fzfigd 10387 | . . . . . . . . 9 |
30 | elfznn 10010 | . . . . . . . . . 10 | |
31 | 30, 10 | sylan2 284 | . . . . . . . . 9 |
32 | 20, 26, 29, 31 | fsumsplit 11370 | . . . . . . . 8 |
33 | 32 | eqcomd 2176 | . . . . . . 7 |
34 | 29, 31 | fsumcl 11363 | . . . . . . . 8 |
35 | 2 | nnzd 9333 | . . . . . . . . . 10 |
36 | 27, 35 | fzfigd 10387 | . . . . . . . . 9 |
37 | elfznn 10010 | . . . . . . . . . 10 | |
38 | 37, 10 | sylan2 284 | . . . . . . . . 9 |
39 | 36, 38 | fsumcl 11363 | . . . . . . . 8 |
40 | 35 | peano2zd 9337 | . . . . . . . . . 10 |
41 | 40, 28 | fzfigd 10387 | . . . . . . . . 9 |
42 | 2 | peano2nnd 8893 | . . . . . . . . . . 11 |
43 | elfzuz 9977 | . . . . . . . . . . 11 | |
44 | eluznn 9559 | . . . . . . . . . . 11 | |
45 | 42, 43, 44 | syl2an 287 | . . . . . . . . . 10 |
46 | 45, 10 | syldan 280 | . . . . . . . . 9 |
47 | 41, 46 | fsumcl 11363 | . . . . . . . 8 |
48 | 34, 39, 47 | subaddd 8248 | . . . . . . 7 |
49 | 33, 48 | mpbird 166 | . . . . . 6 |
50 | 16, 49 | eqtr3d 2205 | . . . . 5 |
51 | 45, 9 | syldan 280 | . . . . . 6 |
52 | 41, 51 | fsumrecl 11364 | . . . . 5 |
53 | 50, 52 | eqeltrd 2247 | . . . 4 |
54 | 42 | nnzd 9333 | . . . . . . 7 |
55 | 54, 28 | fzfigd 10387 | . . . . . 6 |
56 | cvgcmp2n.ge0 | . . . . . . 7 | |
57 | 45, 56 | syldan 280 | . . . . . 6 |
58 | 55, 51, 57 | fsumge0 11422 | . . . . 5 |
59 | 58, 50 | breqtrrd 4017 | . . . 4 |
60 | 53, 59 | absidd 11131 | . . 3 |
61 | 60, 50 | eqtrd 2203 | . 2 |
62 | halfre 9091 | . . . . . . 7 | |
63 | 62 | a1i 9 | . . . . . 6 |
64 | 42 | nnnn0d 9188 | . . . . . 6 |
65 | 63, 64 | reexpcld 10626 | . . . . 5 |
66 | 5 | peano2nnd 8893 | . . . . . . 7 |
67 | 66 | nnnn0d 9188 | . . . . . 6 |
68 | 63, 67 | reexpcld 10626 | . . . . 5 |
69 | 65, 68 | resubcld 8300 | . . . 4 |
70 | 1mhlfehlf 9096 | . . . . . 6 | |
71 | 2rp 9615 | . . . . . . 7 | |
72 | rpreccl 9637 | . . . . . . 7 | |
73 | 71, 72 | ax-mp 5 | . . . . . 6 |
74 | 70, 73 | eqeltri 2243 | . . . . 5 |
75 | 74 | a1i 9 | . . . 4 |
76 | 69, 75 | rerpdivcld 9685 | . . 3 |
77 | 71 | a1i 9 | . . . . 5 |
78 | 2 | nnrpd 9651 | . . . . 5 |
79 | 77, 78 | rpdivcld 9671 | . . . 4 |
80 | 79 | rpred 9653 | . . 3 |
81 | 71 | a1i 9 | . . . . . . . . 9 |
82 | 45 | nnzd 9333 | . . . . . . . . 9 |
83 | 81, 82 | rpexpcld 10633 | . . . . . . . 8 |
84 | 83 | rprecred 9665 | . . . . . . 7 |
85 | cvgcmp2n.lt | . . . . . . . 8 | |
86 | 45, 85 | syldan 280 | . . . . . . 7 |
87 | 41, 51, 84, 86 | fsumle 11426 | . . . . . 6 |
88 | 2cnd 8951 | . . . . . . . . 9 | |
89 | 81 | rpap0d 9659 | . . . . . . . . 9 # |
90 | 88, 89, 82 | exprecapd 10617 | . . . . . . . 8 |
91 | 90 | eqcomd 2176 | . . . . . . 7 |
92 | 91 | sumeq2dv 11331 | . . . . . 6 |
93 | 87, 92 | breqtrd 4015 | . . . . 5 |
94 | fzval3 10160 | . . . . . . 7 ..^ | |
95 | 28, 94 | syl 14 | . . . . . 6 ..^ |
96 | 95 | sumeq1d 11329 | . . . . 5 ..^ |
97 | 93, 96 | breqtrd 4015 | . . . 4 ..^ |
98 | halfcn 9092 | . . . . . 6 | |
99 | 98 | a1i 9 | . . . . 5 |
100 | 1re 7919 | . . . . . . 7 | |
101 | halflt1 9095 | . . . . . . 7 | |
102 | 62, 100, 101 | ltapii 8554 | . . . . . 6 # |
103 | 102 | a1i 9 | . . . . 5 # |
104 | eluzp1p1 9512 | . . . . . 6 | |
105 | 3, 104 | syl 14 | . . . . 5 |
106 | 99, 103, 64, 105 | geosergap 11469 | . . . 4 ..^ |
107 | 97, 106 | breqtrd 4015 | . . 3 |
108 | 73 | a1i 9 | . . . . . . . 8 |
109 | 28 | peano2zd 9337 | . . . . . . . 8 |
110 | 108, 109 | rpexpcld 10633 | . . . . . . 7 |
111 | 110 | rpred 9653 | . . . . . 6 |
112 | 65, 111 | resubcld 8300 | . . . . 5 |
113 | 2 | nnrecred 8925 | . . . . 5 |
114 | 65, 110 | ltsubrpd 9686 | . . . . . 6 |
115 | 2cnd 8951 | . . . . . . . 8 | |
116 | 77 | rpap0d 9659 | . . . . . . . 8 # |
117 | 115, 116, 40 | exprecapd 10617 | . . . . . . 7 |
118 | 42 | nnred 8891 | . . . . . . . . 9 |
119 | 77, 40 | rpexpcld 10633 | . . . . . . . . . 10 |
120 | 119 | rpred 9653 | . . . . . . . . 9 |
121 | 2z 9240 | . . . . . . . . . . . 12 | |
122 | uzid 9501 | . . . . . . . . . . . 12 | |
123 | 121, 122 | ax-mp 5 | . . . . . . . . . . 11 |
124 | 123 | a1i 9 | . . . . . . . . . 10 |
125 | bernneq3 10598 | . . . . . . . . . 10 | |
126 | 124, 64, 125 | syl2anc 409 | . . . . . . . . 9 |
127 | 17, 118, 120, 18, 126 | lttrd 8045 | . . . . . . . 8 |
128 | 78, 119 | ltrecd 9672 | . . . . . . . 8 |
129 | 127, 128 | mpbid 146 | . . . . . . 7 |
130 | 117, 129 | eqbrtrd 4011 | . . . . . 6 |
131 | 112, 65, 113, 114, 130 | lttrd 8045 | . . . . 5 |
132 | 112, 113, 77, 131 | ltmul1dd 9709 | . . . 4 |
133 | 70 | oveq2i 5864 | . . . . . 6 |
134 | 112 | recnd 7948 | . . . . . . 7 |
135 | 1cnd 7936 | . . . . . . 7 | |
136 | 1ap0 8509 | . . . . . . . 8 # | |
137 | 136 | a1i 9 | . . . . . . 7 # |
138 | 134, 135, 115, 137, 116 | divdivap2d 8740 | . . . . . 6 |
139 | 133, 138 | eqtrid 2215 | . . . . 5 |
140 | 134, 115 | mulcld 7940 | . . . . . 6 |
141 | 140 | div1d 8697 | . . . . 5 |
142 | 139, 141 | eqtrd 2203 | . . . 4 |
143 | 17 | recnd 7948 | . . . . 5 |
144 | 2 | nnap0d 8924 | . . . . 5 # |
145 | 115, 143, 144 | divrecap2d 8711 | . . . 4 |
146 | 132, 142, 145 | 3brtr4d 4021 | . . 3 |
147 | 52, 76, 80, 107, 146 | lelttrd 8044 | . 2 |
148 | 61, 147 | eqbrtrd 4011 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cun 3119 cin 3120 c0 3414 class class class wbr 3989 cfv 5198 (class class class)co 5853 cc 7772 cr 7773 cc0 7774 c1 7775 caddc 7777 cmul 7779 clt 7954 cle 7955 cmin 8090 # cap 8500 cdiv 8589 cn 8878 c2 8929 cn0 9135 cz 9212 cuz 9487 crp 9610 cfz 9965 ..^cfzo 10098 cseq 10401 cexp 10475 cabs 10961 csu 11316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-ihash 10710 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 |
This theorem is referenced by: cvgcmp2n 14065 |
Copyright terms: Public domain | W3C validator |