| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version | ||
| Description: Lemma for cvgcmp2n 15905. The partial sums get closer to each other
as
we go further out. The proof proceeds by rewriting
|
| Ref | Expression |
|---|---|
| cvgcmp2n.cl |
|
| cvgcmp2n.ge0 |
|
| cvgcmp2n.lt |
|
| cvgcmp2nlemabs.m |
|
| cvgcmp2nlemabs.n |
|
| Ref | Expression |
|---|---|
| cvgcmp2nlemabs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2205 |
. . . . . . . 8
| |
| 2 | cvgcmp2nlemabs.m |
. . . . . . . . . 10
| |
| 3 | cvgcmp2nlemabs.n |
. . . . . . . . . 10
| |
| 4 | eluznn 9720 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
|
| 6 | elnnuz 9684 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylib 122 |
. . . . . . . 8
|
| 8 | elnnuz 9684 |
. . . . . . . . 9
| |
| 9 | cvgcmp2n.cl |
. . . . . . . . . 10
| |
| 10 | 9 | recnd 8100 |
. . . . . . . . 9
|
| 11 | 8, 10 | sylan2br 288 |
. . . . . . . 8
|
| 12 | 1, 7, 11 | fsum3ser 11650 |
. . . . . . 7
|
| 13 | nnuz 9683 |
. . . . . . . . 9
| |
| 14 | 2, 13 | eleqtrdi 2297 |
. . . . . . . 8
|
| 15 | 1, 14, 11 | fsum3ser 11650 |
. . . . . . 7
|
| 16 | 12, 15 | oveq12d 5961 |
. . . . . 6
|
| 17 | 2 | nnred 9048 |
. . . . . . . . . . 11
|
| 18 | 17 | ltp1d 9002 |
. . . . . . . . . 10
|
| 19 | fzdisj 10173 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
|
| 21 | eluzle 9659 |
. . . . . . . . . . . 12
| |
| 22 | 3, 21 | syl 14 |
. . . . . . . . . . 11
|
| 23 | elfz1b 10211 |
. . . . . . . . . . 11
| |
| 24 | 2, 5, 22, 23 | syl3anbrc 1183 |
. . . . . . . . . 10
|
| 25 | fzsplit 10172 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 1zzd 9398 |
. . . . . . . . . 10
| |
| 28 | 5 | nnzd 9493 |
. . . . . . . . . 10
|
| 29 | 27, 28 | fzfigd 10574 |
. . . . . . . . 9
|
| 30 | elfznn 10175 |
. . . . . . . . . 10
| |
| 31 | 30, 10 | sylan2 286 |
. . . . . . . . 9
|
| 32 | 20, 26, 29, 31 | fsumsplit 11660 |
. . . . . . . 8
|
| 33 | 32 | eqcomd 2210 |
. . . . . . 7
|
| 34 | 29, 31 | fsumcl 11653 |
. . . . . . . 8
|
| 35 | 2 | nnzd 9493 |
. . . . . . . . . 10
|
| 36 | 27, 35 | fzfigd 10574 |
. . . . . . . . 9
|
| 37 | elfznn 10175 |
. . . . . . . . . 10
| |
| 38 | 37, 10 | sylan2 286 |
. . . . . . . . 9
|
| 39 | 36, 38 | fsumcl 11653 |
. . . . . . . 8
|
| 40 | 35 | peano2zd 9497 |
. . . . . . . . . 10
|
| 41 | 40, 28 | fzfigd 10574 |
. . . . . . . . 9
|
| 42 | 2 | peano2nnd 9050 |
. . . . . . . . . . 11
|
| 43 | elfzuz 10142 |
. . . . . . . . . . 11
| |
| 44 | eluznn 9720 |
. . . . . . . . . . 11
| |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . 10
|
| 46 | 45, 10 | syldan 282 |
. . . . . . . . 9
|
| 47 | 41, 46 | fsumcl 11653 |
. . . . . . . 8
|
| 48 | 34, 39, 47 | subaddd 8400 |
. . . . . . 7
|
| 49 | 33, 48 | mpbird 167 |
. . . . . 6
|
| 50 | 16, 49 | eqtr3d 2239 |
. . . . 5
|
| 51 | 45, 9 | syldan 282 |
. . . . . 6
|
| 52 | 41, 51 | fsumrecl 11654 |
. . . . 5
|
| 53 | 50, 52 | eqeltrd 2281 |
. . . 4
|
| 54 | 42 | nnzd 9493 |
. . . . . . 7
|
| 55 | 54, 28 | fzfigd 10574 |
. . . . . 6
|
| 56 | cvgcmp2n.ge0 |
. . . . . . 7
| |
| 57 | 45, 56 | syldan 282 |
. . . . . 6
|
| 58 | 55, 51, 57 | fsumge0 11712 |
. . . . 5
|
| 59 | 58, 50 | breqtrrd 4071 |
. . . 4
|
| 60 | 53, 59 | absidd 11420 |
. . 3
|
| 61 | 60, 50 | eqtrd 2237 |
. 2
|
| 62 | halfre 9249 |
. . . . . . 7
| |
| 63 | 62 | a1i 9 |
. . . . . 6
|
| 64 | 42 | nnnn0d 9347 |
. . . . . 6
|
| 65 | 63, 64 | reexpcld 10833 |
. . . . 5
|
| 66 | 5 | peano2nnd 9050 |
. . . . . . 7
|
| 67 | 66 | nnnn0d 9347 |
. . . . . 6
|
| 68 | 63, 67 | reexpcld 10833 |
. . . . 5
|
| 69 | 65, 68 | resubcld 8452 |
. . . 4
|
| 70 | 1mhlfehlf 9254 |
. . . . . 6
| |
| 71 | 2rp 9779 |
. . . . . . 7
| |
| 72 | rpreccl 9801 |
. . . . . . 7
| |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
|
| 74 | 70, 73 | eqeltri 2277 |
. . . . 5
|
| 75 | 74 | a1i 9 |
. . . 4
|
| 76 | 69, 75 | rerpdivcld 9849 |
. . 3
|
| 77 | 71 | a1i 9 |
. . . . 5
|
| 78 | 2 | nnrpd 9815 |
. . . . 5
|
| 79 | 77, 78 | rpdivcld 9835 |
. . . 4
|
| 80 | 79 | rpred 9817 |
. . 3
|
| 81 | 71 | a1i 9 |
. . . . . . . . 9
|
| 82 | 45 | nnzd 9493 |
. . . . . . . . 9
|
| 83 | 81, 82 | rpexpcld 10840 |
. . . . . . . 8
|
| 84 | 83 | rprecred 9829 |
. . . . . . 7
|
| 85 | cvgcmp2n.lt |
. . . . . . . 8
| |
| 86 | 45, 85 | syldan 282 |
. . . . . . 7
|
| 87 | 41, 51, 84, 86 | fsumle 11716 |
. . . . . 6
|
| 88 | 2cnd 9108 |
. . . . . . . . 9
| |
| 89 | 81 | rpap0d 9823 |
. . . . . . . . 9
|
| 90 | 88, 89, 82 | exprecapd 10824 |
. . . . . . . 8
|
| 91 | 90 | eqcomd 2210 |
. . . . . . 7
|
| 92 | 91 | sumeq2dv 11621 |
. . . . . 6
|
| 93 | 87, 92 | breqtrd 4069 |
. . . . 5
|
| 94 | fzval3 10331 |
. . . . . . 7
| |
| 95 | 28, 94 | syl 14 |
. . . . . 6
|
| 96 | 95 | sumeq1d 11619 |
. . . . 5
|
| 97 | 93, 96 | breqtrd 4069 |
. . . 4
|
| 98 | halfcn 9250 |
. . . . . 6
| |
| 99 | 98 | a1i 9 |
. . . . 5
|
| 100 | 1re 8070 |
. . . . . . 7
| |
| 101 | halflt1 9253 |
. . . . . . 7
| |
| 102 | 62, 100, 101 | ltapii 8707 |
. . . . . 6
|
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | eluzp1p1 9673 |
. . . . . 6
| |
| 105 | 3, 104 | syl 14 |
. . . . 5
|
| 106 | 99, 103, 64, 105 | geosergap 11759 |
. . . 4
|
| 107 | 97, 106 | breqtrd 4069 |
. . 3
|
| 108 | 73 | a1i 9 |
. . . . . . . 8
|
| 109 | 28 | peano2zd 9497 |
. . . . . . . 8
|
| 110 | 108, 109 | rpexpcld 10840 |
. . . . . . 7
|
| 111 | 110 | rpred 9817 |
. . . . . 6
|
| 112 | 65, 111 | resubcld 8452 |
. . . . 5
|
| 113 | 2 | nnrecred 9082 |
. . . . 5
|
| 114 | 65, 110 | ltsubrpd 9850 |
. . . . . 6
|
| 115 | 2cnd 9108 |
. . . . . . . 8
| |
| 116 | 77 | rpap0d 9823 |
. . . . . . . 8
|
| 117 | 115, 116, 40 | exprecapd 10824 |
. . . . . . 7
|
| 118 | 42 | nnred 9048 |
. . . . . . . . 9
|
| 119 | 77, 40 | rpexpcld 10840 |
. . . . . . . . . 10
|
| 120 | 119 | rpred 9817 |
. . . . . . . . 9
|
| 121 | 2z 9399 |
. . . . . . . . . . . 12
| |
| 122 | uzid 9661 |
. . . . . . . . . . . 12
| |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . 11
|
| 124 | 123 | a1i 9 |
. . . . . . . . . 10
|
| 125 | bernneq3 10805 |
. . . . . . . . . 10
| |
| 126 | 124, 64, 125 | syl2anc 411 |
. . . . . . . . 9
|
| 127 | 17, 118, 120, 18, 126 | lttrd 8197 |
. . . . . . . 8
|
| 128 | 78, 119 | ltrecd 9836 |
. . . . . . . 8
|
| 129 | 127, 128 | mpbid 147 |
. . . . . . 7
|
| 130 | 117, 129 | eqbrtrd 4065 |
. . . . . 6
|
| 131 | 112, 65, 113, 114, 130 | lttrd 8197 |
. . . . 5
|
| 132 | 112, 113, 77, 131 | ltmul1dd 9873 |
. . . 4
|
| 133 | 70 | oveq2i 5954 |
. . . . . 6
|
| 134 | 112 | recnd 8100 |
. . . . . . 7
|
| 135 | 1cnd 8087 |
. . . . . . 7
| |
| 136 | 1ap0 8662 |
. . . . . . . 8
| |
| 137 | 136 | a1i 9 |
. . . . . . 7
|
| 138 | 134, 135, 115, 137, 116 | divdivap2d 8895 |
. . . . . 6
|
| 139 | 133, 138 | eqtrid 2249 |
. . . . 5
|
| 140 | 134, 115 | mulcld 8092 |
. . . . . 6
|
| 141 | 140 | div1d 8852 |
. . . . 5
|
| 142 | 139, 141 | eqtrd 2237 |
. . . 4
|
| 143 | 17 | recnd 8100 |
. . . . 5
|
| 144 | 2 | nnap0d 9081 |
. . . . 5
|
| 145 | 115, 143, 144 | divrecap2d 8866 |
. . . 4
|
| 146 | 132, 142, 145 | 3brtr4d 4075 |
. . 3
|
| 147 | 52, 76, 80, 107, 146 | lelttrd 8196 |
. 2
|
| 148 | 61, 147 | eqbrtrd 4065 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-po 4342 df-iso 4343 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-isom 5279 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-n0 9295 df-z 9372 df-uz 9648 df-q 9740 df-rp 9775 df-ico 10015 df-fz 10130 df-fzo 10264 df-seqfrec 10591 df-exp 10682 df-ihash 10919 df-cj 11095 df-re 11096 df-im 11097 df-rsqrt 11251 df-abs 11252 df-clim 11532 df-sumdc 11607 |
| This theorem is referenced by: cvgcmp2n 15905 |
| Copyright terms: Public domain | W3C validator |