Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs Unicode version

Theorem cvgcmp2nlemabs 13400
Description: Lemma for cvgcmp2n 13401. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting  (  seq 1
(  +  ,  G
) `  N ) as the sum of  (  seq 1
(  +  ,  G
) `  M ) and a term which gets smaller as  M gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
cvgcmp2n.ge0  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
cvgcmp2n.lt  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
cvgcmp2nlemabs.m  |-  ( ph  ->  M  e.  NN )
cvgcmp2nlemabs.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgcmp2nlemabs  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  < 
( 2  /  M
) )
Distinct variable groups:    k, G    k, M    k, N    ph, k

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2141 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( G `  k )  =  ( G `  k ) )
2 cvgcmp2nlemabs.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN )
3 cvgcmp2nlemabs.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluznn 9420 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN )
52, 3, 4syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
6 elnnuz 9385 . . . . . . . . 9  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
75, 6sylib 121 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
8 elnnuz 9385 . . . . . . . . 9  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
9 cvgcmp2n.cl . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
109recnd 7817 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
118, 10sylan2br 286 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( G `  k )  e.  CC )
121, 7, 11fsum3ser 11197 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 1 ... N ) ( G `  k
)  =  (  seq 1 (  +  ,  G ) `  N
) )
13 nnuz 9384 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
142, 13eleqtrdi 2233 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
151, 14, 11fsum3ser 11197 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 1 ... M ) ( G `  k
)  =  (  seq 1 (  +  ,  G ) `  M
) )
1612, 15oveq12d 5799 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... N ) ( G `  k
)  -  sum_ k  e.  ( 1 ... M
) ( G `  k ) )  =  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
) )
172nnred 8756 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
1817ltp1d 8711 . . . . . . . . . 10  |-  ( ph  ->  M  <  ( M  +  1 ) )
19 fzdisj 9862 . . . . . . . . . 10  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
21 eluzle 9361 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
223, 21syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  <_  N )
23 elfz1b 9900 . . . . . . . . . . 11  |-  ( M  e.  ( 1 ... N )  <->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
242, 5, 22, 23syl3anbrc 1166 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( 1 ... N ) )
25 fzsplit 9861 . . . . . . . . . 10  |-  ( M  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )
2624, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) ) )
27 1zzd 9104 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
285nnzd 9195 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
2927, 28fzfigd 10234 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
30 elfznn 9864 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
3130, 10sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( G `  k )  e.  CC )
3220, 26, 29, 31fsumsplit 11207 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 1 ... N ) ( G `  k
)  =  ( sum_ k  e.  ( 1 ... M ) ( G `  k )  +  sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) ) )
3332eqcomd 2146 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... M ) ( G `  k
)  +  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k ) )  = 
sum_ k  e.  ( 1 ... N ) ( G `  k
) )
3429, 31fsumcl 11200 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 1 ... N ) ( G `  k
)  e.  CC )
352nnzd 9195 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
3627, 35fzfigd 10234 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
37 elfznn 9864 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
3837, 10sylan2 284 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  e.  CC )
3936, 38fsumcl 11200 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 1 ... M ) ( G `  k
)  e.  CC )
4035peano2zd 9199 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4140, 28fzfigd 10234 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
422peano2nnd 8758 . . . . . . . . . . 11  |-  ( ph  ->  ( M  +  1 )  e.  NN )
43 elfzuz 9832 . . . . . . . . . . 11  |-  ( k  e.  ( ( M  +  1 ) ... N )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
44 eluznn 9420 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  NN )
4542, 43, 44syl2an 287 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  NN )
4645, 10syldan 280 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  k )  e.  CC )
4741, 46fsumcl 11200 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  e.  CC )
4834, 39, 47subaddd 8114 . . . . . . 7  |-  ( ph  ->  ( ( sum_ k  e.  ( 1 ... N
) ( G `  k )  -  sum_ k  e.  ( 1 ... M ) ( G `  k ) )  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k )  <->  ( sum_ k  e.  ( 1 ... M ) ( G `  k )  +  sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) )  =  sum_ k  e.  ( 1 ... N ) ( G `  k ) ) )
4933, 48mpbird 166 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... N ) ( G `  k
)  -  sum_ k  e.  ( 1 ... M
) ( G `  k ) )  = 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) )
5016, 49eqtr3d 2175 . . . . 5  |-  ( ph  ->  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
)  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k ) )
5145, 9syldan 280 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  k )  e.  RR )
5241, 51fsumrecl 11201 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  e.  RR )
5350, 52eqeltrd 2217 . . . 4  |-  ( ph  ->  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
)  e.  RR )
5442nnzd 9195 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
5554, 28fzfigd 10234 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
56 cvgcmp2n.ge0 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
5745, 56syldan 280 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( G `  k
) )
5855, 51, 57fsumge0 11259 . . . . 5  |-  ( ph  ->  0  <_  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k ) )
5958, 50breqtrrd 3963 . . . 4  |-  ( ph  ->  0  <_  ( (  seq 1 (  +  ,  G ) `  N
)  -  (  seq 1 (  +  ,  G ) `  M
) ) )
6053, 59absidd 10970 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  =  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
) )
6160, 50eqtrd 2173 . 2  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  = 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) )
62 halfre 8956 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
6362a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
6442nnnn0d 9053 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
6563, 64reexpcld 10471 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( M  +  1 ) )  e.  RR )
665peano2nnd 8758 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  e.  NN )
6766nnnn0d 9053 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
6863, 67reexpcld 10471 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( N  +  1 ) )  e.  RR )
6965, 68resubcld 8166 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  e.  RR )
70 1mhlfehlf 8961 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
71 2rp 9474 . . . . . . 7  |-  2  e.  RR+
72 rpreccl 9496 . . . . . . 7  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
7371, 72ax-mp 5 . . . . . 6  |-  ( 1  /  2 )  e.  RR+
7470, 73eqeltri 2213 . . . . 5  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7574a1i 9 . . . 4  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7669, 75rerpdivcld 9544 . . 3  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR )
7771a1i 9 . . . . 5  |-  ( ph  ->  2  e.  RR+ )
782nnrpd 9510 . . . . 5  |-  ( ph  ->  M  e.  RR+ )
7977, 78rpdivcld 9530 . . . 4  |-  ( ph  ->  ( 2  /  M
)  e.  RR+ )
8079rpred 9512 . . 3  |-  ( ph  ->  ( 2  /  M
)  e.  RR )
8171a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  2  e.  RR+ )
8245nnzd 9195 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ZZ )
8381, 82rpexpcld 10478 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
2 ^ k )  e.  RR+ )
8483rprecred 9524 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
1  /  ( 2 ^ k ) )  e.  RR )
85 cvgcmp2n.lt . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
8645, 85syldan 280 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  k )  <_  ( 1  /  (
2 ^ k ) ) )
8741, 51, 84, 86fsumle 11263 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( 1  / 
( 2 ^ k
) ) )
88 2cnd 8816 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  2  e.  CC )
8981rpap0d 9518 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  2 #  0 )
9088, 89, 82exprecapd 10462 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( 1  /  2
) ^ k )  =  ( 1  / 
( 2 ^ k
) ) )
9190eqcomd 2146 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
1  /  ( 2 ^ k ) )  =  ( ( 1  /  2 ) ^
k ) )
9291sumeq2dv 11168 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( 1  /  (
2 ^ k ) )  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( ( 1  /  2 ) ^
k ) )
9387, 92breqtrd 3961 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( ( 1  /  2 ) ^
k ) )
94 fzval3 10011 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( M  +  1 ) ... N )  =  ( ( M  +  1 )..^ ( N  +  1 ) ) )
9528, 94syl 14 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  =  ( ( M  +  1 )..^ ( N  +  1 ) ) )
9695sumeq1d 11166 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( ( 1  / 
2 ) ^ k
)  =  sum_ k  e.  ( ( M  + 
1 )..^ ( N  +  1 ) ) ( ( 1  / 
2 ) ^ k
) )
9793, 96breqtrd 3961 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  sum_ k  e.  ( ( M  + 
1 )..^ ( N  +  1 ) ) ( ( 1  / 
2 ) ^ k
) )
98 halfcn 8957 . . . . . 6  |-  ( 1  /  2 )  e.  CC
9998a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
100 1re 7788 . . . . . . 7  |-  1  e.  RR
101 halflt1 8960 . . . . . . 7  |-  ( 1  /  2 )  <  1
10262, 100, 101ltapii 8420 . . . . . 6  |-  ( 1  /  2 ) #  1
103102a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
) #  1 )
104 eluzp1p1 9374 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
1053, 104syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1
) ) )
10699, 103, 64, 105geosergap 11306 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ ( N  + 
1 ) ) ( ( 1  /  2
) ^ k )  =  ( ( ( ( 1  /  2
) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^
( N  +  1 ) ) )  / 
( 1  -  (
1  /  2 ) ) ) )
10797, 106breqtrd 3961 . . 3  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  ( (
( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  /  ( 1  -  ( 1  /  2
) ) ) )
10873a1i 9 . . . . . . . 8  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
10928peano2zd 9199 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
110108, 109rpexpcld 10478 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( N  +  1 ) )  e.  RR+ )
111110rpred 9512 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( N  +  1 ) )  e.  RR )
11265, 111resubcld 8166 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  e.  RR )
1132nnrecred 8790 . . . . 5  |-  ( ph  ->  ( 1  /  M
)  e.  RR )
11465, 110ltsubrpd 9545 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  <  ( ( 1  /  2 ) ^ ( M  + 
1 ) ) )
115 2cnd 8816 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
11677rpap0d 9518 . . . . . . . 8  |-  ( ph  ->  2 #  0 )
117115, 116, 40exprecapd 10462 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( M  +  1 ) )  =  ( 1  /  ( 2 ^ ( M  +  1 ) ) ) )
11842nnred 8756 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  RR )
11977, 40rpexpcld 10478 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( M  +  1 ) )  e.  RR+ )
120119rpred 9512 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( M  +  1 ) )  e.  RR )
121 2z 9105 . . . . . . . . . . . 12  |-  2  e.  ZZ
122 uzid 9363 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
123121, 122ax-mp 5 . . . . . . . . . . 11  |-  2  e.  ( ZZ>= `  2 )
124123a1i 9 . . . . . . . . . 10  |-  ( ph  ->  2  e.  ( ZZ>= ` 
2 ) )
125 bernneq3 10444 . . . . . . . . . 10  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  ( M  +  1 )  e.  NN0 )  -> 
( M  +  1 )  <  ( 2 ^ ( M  + 
1 ) ) )
126124, 64, 125syl2anc 409 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  <  ( 2 ^ ( M  + 
1 ) ) )
12717, 118, 120, 18, 126lttrd 7911 . . . . . . . 8  |-  ( ph  ->  M  <  ( 2 ^ ( M  + 
1 ) ) )
12878, 119ltrecd 9531 . . . . . . . 8  |-  ( ph  ->  ( M  <  (
2 ^ ( M  +  1 ) )  <-> 
( 1  /  (
2 ^ ( M  +  1 ) ) )  <  ( 1  /  M ) ) )
129127, 128mpbid 146 . . . . . . 7  |-  ( ph  ->  ( 1  /  (
2 ^ ( M  +  1 ) ) )  <  ( 1  /  M ) )
130117, 129eqbrtrd 3957 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( M  +  1 ) )  <  ( 1  /  M ) )
131112, 65, 113, 114, 130lttrd 7911 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  <  ( 1  /  M ) )
132112, 113, 77, 131ltmul1dd 9568 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  x.  2 )  <  ( ( 1  /  M )  x.  2 ) )
13370oveq2i 5792 . . . . . 6  |-  ( ( ( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  /  ( 1  -  ( 1  /  2
) ) )  =  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  /  2 ) )
134112recnd 7817 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  e.  CC )
135 1cnd 7805 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
136 1ap0 8375 . . . . . . . 8  |-  1 #  0
137136a1i 9 . . . . . . 7  |-  ( ph  ->  1 #  0 )
138134, 135, 115, 137, 116divdivap2d 8606 . . . . . 6  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  /  2 ) )  =  ( ( ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  x.  2 )  /  1 ) )
139133, 138syl5eq 2185 . . . . 5  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  =  ( ( ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  x.  2 )  /  1 ) )
140134, 115mulcld 7809 . . . . . 6  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  x.  2 )  e.  CC )
141140div1d 8563 . . . . 5  |-  ( ph  ->  ( ( ( ( ( 1  /  2
) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^
( N  +  1 ) ) )  x.  2 )  /  1
)  =  ( ( ( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  x.  2 ) )
142139, 141eqtrd 2173 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  =  ( ( ( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  x.  2 ) )
14317recnd 7817 . . . . 5  |-  ( ph  ->  M  e.  CC )
1442nnap0d 8789 . . . . 5  |-  ( ph  ->  M #  0 )
145115, 143, 144divrecap2d 8577 . . . 4  |-  ( ph  ->  ( 2  /  M
)  =  ( ( 1  /  M )  x.  2 ) )
146132, 142, 1453brtr4d 3967 . . 3  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  <  ( 2  /  M ) )
14752, 76, 80, 107, 146lelttrd 7910 . 2  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <  ( 2  /  M ) )
14861, 147eqbrtrd 3957 1  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  < 
( 2  /  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481    u. cun 3073    i^i cin 3074   (/)c0 3367   class class class wbr 3936   ` cfv 5130  (class class class)co 5781   CCcc 7641   RRcr 7642   0cc0 7643   1c1 7644    + caddc 7646    x. cmul 7648    < clt 7823    <_ cle 7824    - cmin 7956   # cap 8366    / cdiv 8455   NNcn 8743   2c2 8794   NN0cn0 9000   ZZcz 9077   ZZ>=cuz 9349   RR+crp 9469   ...cfz 9820  ..^cfzo 9949    seqcseq 10248   ^cexp 10322   abscabs 10800   sum_csu 11153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-isom 5139  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-irdg 6274  df-frec 6295  df-1o 6320  df-oadd 6324  df-er 6436  df-en 6642  df-dom 6643  df-fin 6644  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-q 9438  df-rp 9470  df-ico 9706  df-fz 9821  df-fzo 9950  df-seqfrec 10249  df-exp 10323  df-ihash 10553  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-clim 11079  df-sumdc 11154
This theorem is referenced by:  cvgcmp2n  13401
  Copyright terms: Public domain W3C validator