Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version |
Description: Lemma for cvgcmp2n 14025. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting as the sum of and a term which gets smaller as gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
Ref | Expression |
---|---|
cvgcmp2n.cl | |
cvgcmp2n.ge0 | |
cvgcmp2n.lt | |
cvgcmp2nlemabs.m | |
cvgcmp2nlemabs.n |
Ref | Expression |
---|---|
cvgcmp2nlemabs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2171 | . . . . . . . 8 | |
2 | cvgcmp2nlemabs.m | . . . . . . . . . 10 | |
3 | cvgcmp2nlemabs.n | . . . . . . . . . 10 | |
4 | eluznn 9546 | . . . . . . . . . 10 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . . . . . 9 |
6 | elnnuz 9510 | . . . . . . . . 9 | |
7 | 5, 6 | sylib 121 | . . . . . . . 8 |
8 | elnnuz 9510 | . . . . . . . . 9 | |
9 | cvgcmp2n.cl | . . . . . . . . . 10 | |
10 | 9 | recnd 7935 | . . . . . . . . 9 |
11 | 8, 10 | sylan2br 286 | . . . . . . . 8 |
12 | 1, 7, 11 | fsum3ser 11347 | . . . . . . 7 |
13 | nnuz 9509 | . . . . . . . . 9 | |
14 | 2, 13 | eleqtrdi 2263 | . . . . . . . 8 |
15 | 1, 14, 11 | fsum3ser 11347 | . . . . . . 7 |
16 | 12, 15 | oveq12d 5868 | . . . . . 6 |
17 | 2 | nnred 8878 | . . . . . . . . . . 11 |
18 | 17 | ltp1d 8833 | . . . . . . . . . 10 |
19 | fzdisj 9995 | . . . . . . . . . 10 | |
20 | 18, 19 | syl 14 | . . . . . . . . 9 |
21 | eluzle 9486 | . . . . . . . . . . . 12 | |
22 | 3, 21 | syl 14 | . . . . . . . . . . 11 |
23 | elfz1b 10033 | . . . . . . . . . . 11 | |
24 | 2, 5, 22, 23 | syl3anbrc 1176 | . . . . . . . . . 10 |
25 | fzsplit 9994 | . . . . . . . . . 10 | |
26 | 24, 25 | syl 14 | . . . . . . . . 9 |
27 | 1zzd 9226 | . . . . . . . . . 10 | |
28 | 5 | nnzd 9320 | . . . . . . . . . 10 |
29 | 27, 28 | fzfigd 10374 | . . . . . . . . 9 |
30 | elfznn 9997 | . . . . . . . . . 10 | |
31 | 30, 10 | sylan2 284 | . . . . . . . . 9 |
32 | 20, 26, 29, 31 | fsumsplit 11357 | . . . . . . . 8 |
33 | 32 | eqcomd 2176 | . . . . . . 7 |
34 | 29, 31 | fsumcl 11350 | . . . . . . . 8 |
35 | 2 | nnzd 9320 | . . . . . . . . . 10 |
36 | 27, 35 | fzfigd 10374 | . . . . . . . . 9 |
37 | elfznn 9997 | . . . . . . . . . 10 | |
38 | 37, 10 | sylan2 284 | . . . . . . . . 9 |
39 | 36, 38 | fsumcl 11350 | . . . . . . . 8 |
40 | 35 | peano2zd 9324 | . . . . . . . . . 10 |
41 | 40, 28 | fzfigd 10374 | . . . . . . . . 9 |
42 | 2 | peano2nnd 8880 | . . . . . . . . . . 11 |
43 | elfzuz 9964 | . . . . . . . . . . 11 | |
44 | eluznn 9546 | . . . . . . . . . . 11 | |
45 | 42, 43, 44 | syl2an 287 | . . . . . . . . . 10 |
46 | 45, 10 | syldan 280 | . . . . . . . . 9 |
47 | 41, 46 | fsumcl 11350 | . . . . . . . 8 |
48 | 34, 39, 47 | subaddd 8235 | . . . . . . 7 |
49 | 33, 48 | mpbird 166 | . . . . . 6 |
50 | 16, 49 | eqtr3d 2205 | . . . . 5 |
51 | 45, 9 | syldan 280 | . . . . . 6 |
52 | 41, 51 | fsumrecl 11351 | . . . . 5 |
53 | 50, 52 | eqeltrd 2247 | . . . 4 |
54 | 42 | nnzd 9320 | . . . . . . 7 |
55 | 54, 28 | fzfigd 10374 | . . . . . 6 |
56 | cvgcmp2n.ge0 | . . . . . . 7 | |
57 | 45, 56 | syldan 280 | . . . . . 6 |
58 | 55, 51, 57 | fsumge0 11409 | . . . . 5 |
59 | 58, 50 | breqtrrd 4015 | . . . 4 |
60 | 53, 59 | absidd 11118 | . . 3 |
61 | 60, 50 | eqtrd 2203 | . 2 |
62 | halfre 9078 | . . . . . . 7 | |
63 | 62 | a1i 9 | . . . . . 6 |
64 | 42 | nnnn0d 9175 | . . . . . 6 |
65 | 63, 64 | reexpcld 10613 | . . . . 5 |
66 | 5 | peano2nnd 8880 | . . . . . . 7 |
67 | 66 | nnnn0d 9175 | . . . . . 6 |
68 | 63, 67 | reexpcld 10613 | . . . . 5 |
69 | 65, 68 | resubcld 8287 | . . . 4 |
70 | 1mhlfehlf 9083 | . . . . . 6 | |
71 | 2rp 9602 | . . . . . . 7 | |
72 | rpreccl 9624 | . . . . . . 7 | |
73 | 71, 72 | ax-mp 5 | . . . . . 6 |
74 | 70, 73 | eqeltri 2243 | . . . . 5 |
75 | 74 | a1i 9 | . . . 4 |
76 | 69, 75 | rerpdivcld 9672 | . . 3 |
77 | 71 | a1i 9 | . . . . 5 |
78 | 2 | nnrpd 9638 | . . . . 5 |
79 | 77, 78 | rpdivcld 9658 | . . . 4 |
80 | 79 | rpred 9640 | . . 3 |
81 | 71 | a1i 9 | . . . . . . . . 9 |
82 | 45 | nnzd 9320 | . . . . . . . . 9 |
83 | 81, 82 | rpexpcld 10620 | . . . . . . . 8 |
84 | 83 | rprecred 9652 | . . . . . . 7 |
85 | cvgcmp2n.lt | . . . . . . . 8 | |
86 | 45, 85 | syldan 280 | . . . . . . 7 |
87 | 41, 51, 84, 86 | fsumle 11413 | . . . . . 6 |
88 | 2cnd 8938 | . . . . . . . . 9 | |
89 | 81 | rpap0d 9646 | . . . . . . . . 9 # |
90 | 88, 89, 82 | exprecapd 10604 | . . . . . . . 8 |
91 | 90 | eqcomd 2176 | . . . . . . 7 |
92 | 91 | sumeq2dv 11318 | . . . . . 6 |
93 | 87, 92 | breqtrd 4013 | . . . . 5 |
94 | fzval3 10147 | . . . . . . 7 ..^ | |
95 | 28, 94 | syl 14 | . . . . . 6 ..^ |
96 | 95 | sumeq1d 11316 | . . . . 5 ..^ |
97 | 93, 96 | breqtrd 4013 | . . . 4 ..^ |
98 | halfcn 9079 | . . . . . 6 | |
99 | 98 | a1i 9 | . . . . 5 |
100 | 1re 7906 | . . . . . . 7 | |
101 | halflt1 9082 | . . . . . . 7 | |
102 | 62, 100, 101 | ltapii 8541 | . . . . . 6 # |
103 | 102 | a1i 9 | . . . . 5 # |
104 | eluzp1p1 9499 | . . . . . 6 | |
105 | 3, 104 | syl 14 | . . . . 5 |
106 | 99, 103, 64, 105 | geosergap 11456 | . . . 4 ..^ |
107 | 97, 106 | breqtrd 4013 | . . 3 |
108 | 73 | a1i 9 | . . . . . . . 8 |
109 | 28 | peano2zd 9324 | . . . . . . . 8 |
110 | 108, 109 | rpexpcld 10620 | . . . . . . 7 |
111 | 110 | rpred 9640 | . . . . . 6 |
112 | 65, 111 | resubcld 8287 | . . . . 5 |
113 | 2 | nnrecred 8912 | . . . . 5 |
114 | 65, 110 | ltsubrpd 9673 | . . . . . 6 |
115 | 2cnd 8938 | . . . . . . . 8 | |
116 | 77 | rpap0d 9646 | . . . . . . . 8 # |
117 | 115, 116, 40 | exprecapd 10604 | . . . . . . 7 |
118 | 42 | nnred 8878 | . . . . . . . . 9 |
119 | 77, 40 | rpexpcld 10620 | . . . . . . . . . 10 |
120 | 119 | rpred 9640 | . . . . . . . . 9 |
121 | 2z 9227 | . . . . . . . . . . . 12 | |
122 | uzid 9488 | . . . . . . . . . . . 12 | |
123 | 121, 122 | ax-mp 5 | . . . . . . . . . . 11 |
124 | 123 | a1i 9 | . . . . . . . . . 10 |
125 | bernneq3 10585 | . . . . . . . . . 10 | |
126 | 124, 64, 125 | syl2anc 409 | . . . . . . . . 9 |
127 | 17, 118, 120, 18, 126 | lttrd 8032 | . . . . . . . 8 |
128 | 78, 119 | ltrecd 9659 | . . . . . . . 8 |
129 | 127, 128 | mpbid 146 | . . . . . . 7 |
130 | 117, 129 | eqbrtrd 4009 | . . . . . 6 |
131 | 112, 65, 113, 114, 130 | lttrd 8032 | . . . . 5 |
132 | 112, 113, 77, 131 | ltmul1dd 9696 | . . . 4 |
133 | 70 | oveq2i 5861 | . . . . . 6 |
134 | 112 | recnd 7935 | . . . . . . 7 |
135 | 1cnd 7923 | . . . . . . 7 | |
136 | 1ap0 8496 | . . . . . . . 8 # | |
137 | 136 | a1i 9 | . . . . . . 7 # |
138 | 134, 135, 115, 137, 116 | divdivap2d 8727 | . . . . . 6 |
139 | 133, 138 | eqtrid 2215 | . . . . 5 |
140 | 134, 115 | mulcld 7927 | . . . . . 6 |
141 | 140 | div1d 8684 | . . . . 5 |
142 | 139, 141 | eqtrd 2203 | . . . 4 |
143 | 17 | recnd 7935 | . . . . 5 |
144 | 2 | nnap0d 8911 | . . . . 5 # |
145 | 115, 143, 144 | divrecap2d 8698 | . . . 4 |
146 | 132, 142, 145 | 3brtr4d 4019 | . . 3 |
147 | 52, 76, 80, 107, 146 | lelttrd 8031 | . 2 |
148 | 61, 147 | eqbrtrd 4009 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cun 3119 cin 3120 c0 3414 class class class wbr 3987 cfv 5196 (class class class)co 5850 cc 7759 cr 7760 cc0 7761 c1 7762 caddc 7764 cmul 7766 clt 7941 cle 7942 cmin 8077 # cap 8487 cdiv 8576 cn 8865 c2 8916 cn0 9122 cz 9199 cuz 9474 crp 9597 cfz 9952 ..^cfzo 10085 cseq 10388 cexp 10462 cabs 10948 csu 11303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-mulrcl 7860 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-precex 7871 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-apti 7876 ax-pre-ltadd 7877 ax-pre-mulgt0 7878 ax-pre-mulext 7879 ax-arch 7880 ax-caucvg 7881 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-frec 6367 df-1o 6392 df-oadd 6396 df-er 6509 df-en 6715 df-dom 6716 df-fin 6717 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-reap 8481 df-ap 8488 df-div 8577 df-inn 8866 df-2 8924 df-3 8925 df-4 8926 df-n0 9123 df-z 9200 df-uz 9475 df-q 9566 df-rp 9598 df-ico 9838 df-fz 9953 df-fzo 10086 df-seqfrec 10389 df-exp 10463 df-ihash 10697 df-cj 10793 df-re 10794 df-im 10795 df-rsqrt 10949 df-abs 10950 df-clim 11229 df-sumdc 11304 |
This theorem is referenced by: cvgcmp2n 14025 |
Copyright terms: Public domain | W3C validator |