Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  cvgcmp2nlemabs Unicode version

Theorem cvgcmp2nlemabs 15904
Description: Lemma for cvgcmp2n 15905. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting  (  seq 1
(  +  ,  G
) `  N ) as the sum of  (  seq 1
(  +  ,  G
) `  M ) and a term which gets smaller as  M gets large. (Contributed by Jim Kingdon, 25-Aug-2023.)
Hypotheses
Ref Expression
cvgcmp2n.cl  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
cvgcmp2n.ge0  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
cvgcmp2n.lt  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
cvgcmp2nlemabs.m  |-  ( ph  ->  M  e.  NN )
cvgcmp2nlemabs.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
Assertion
Ref Expression
cvgcmp2nlemabs  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  < 
( 2  /  M
) )
Distinct variable groups:    k, G    k, M    k, N    ph, k

Proof of Theorem cvgcmp2nlemabs
StepHypRef Expression
1 eqidd 2205 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( G `  k )  =  ( G `  k ) )
2 cvgcmp2nlemabs.m . . . . . . . . . 10  |-  ( ph  ->  M  e.  NN )
3 cvgcmp2nlemabs.n . . . . . . . . . 10  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
4 eluznn 9720 . . . . . . . . . 10  |-  ( ( M  e.  NN  /\  N  e.  ( ZZ>= `  M ) )  ->  N  e.  NN )
52, 3, 4syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  N  e.  NN )
6 elnnuz 9684 . . . . . . . . 9  |-  ( N  e.  NN  <->  N  e.  ( ZZ>= `  1 )
)
75, 6sylib 122 . . . . . . . 8  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
8 elnnuz 9684 . . . . . . . . 9  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
9 cvgcmp2n.cl . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  RR )
109recnd 8100 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  e.  CC )
118, 10sylan2br 288 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  1 )
)  ->  ( G `  k )  e.  CC )
121, 7, 11fsum3ser 11650 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 1 ... N ) ( G `  k
)  =  (  seq 1 (  +  ,  G ) `  N
) )
13 nnuz 9683 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
142, 13eleqtrdi 2297 . . . . . . . 8  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
151, 14, 11fsum3ser 11650 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  ( 1 ... M ) ( G `  k
)  =  (  seq 1 (  +  ,  G ) `  M
) )
1612, 15oveq12d 5961 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... N ) ( G `  k
)  -  sum_ k  e.  ( 1 ... M
) ( G `  k ) )  =  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
) )
172nnred 9048 . . . . . . . . . . 11  |-  ( ph  ->  M  e.  RR )
1817ltp1d 9002 . . . . . . . . . 10  |-  ( ph  ->  M  <  ( M  +  1 ) )
19 fzdisj 10173 . . . . . . . . . 10  |-  ( M  <  ( M  + 
1 )  ->  (
( 1 ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
2018, 19syl 14 . . . . . . . . 9  |-  ( ph  ->  ( ( 1 ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
21 eluzle 9659 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
223, 21syl 14 . . . . . . . . . . 11  |-  ( ph  ->  M  <_  N )
23 elfz1b 10211 . . . . . . . . . . 11  |-  ( M  e.  ( 1 ... N )  <->  ( M  e.  NN  /\  N  e.  NN  /\  M  <_  N ) )
242, 5, 22, 23syl3anbrc 1183 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ( 1 ... N ) )
25 fzsplit 10172 . . . . . . . . . 10  |-  ( M  e.  ( 1 ... N )  ->  (
1 ... N )  =  ( ( 1 ... M )  u.  (
( M  +  1 ) ... N ) ) )
2624, 25syl 14 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  =  ( ( 1 ... M )  u.  ( ( M  +  1 ) ... N ) ) )
27 1zzd 9398 . . . . . . . . . 10  |-  ( ph  ->  1  e.  ZZ )
285nnzd 9493 . . . . . . . . . 10  |-  ( ph  ->  N  e.  ZZ )
2927, 28fzfigd 10574 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
30 elfznn 10175 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... N )  ->  k  e.  NN )
3130, 10sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... N
) )  ->  ( G `  k )  e.  CC )
3220, 26, 29, 31fsumsplit 11660 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 1 ... N ) ( G `  k
)  =  ( sum_ k  e.  ( 1 ... M ) ( G `  k )  +  sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) ) )
3332eqcomd 2210 . . . . . . 7  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... M ) ( G `  k
)  +  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k ) )  = 
sum_ k  e.  ( 1 ... N ) ( G `  k
) )
3429, 31fsumcl 11653 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 1 ... N ) ( G `  k
)  e.  CC )
352nnzd 9493 . . . . . . . . . 10  |-  ( ph  ->  M  e.  ZZ )
3627, 35fzfigd 10574 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... M
)  e.  Fin )
37 elfznn 10175 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... M )  ->  k  e.  NN )
3837, 10sylan2 286 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  e.  CC )
3936, 38fsumcl 11653 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( 1 ... M ) ( G `  k
)  e.  CC )
4035peano2zd 9497 . . . . . . . . . 10  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
4140, 28fzfigd 10574 . . . . . . . . 9  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
422peano2nnd 9050 . . . . . . . . . . 11  |-  ( ph  ->  ( M  +  1 )  e.  NN )
43 elfzuz 10142 . . . . . . . . . . 11  |-  ( k  e.  ( ( M  +  1 ) ... N )  ->  k  e.  ( ZZ>= `  ( M  +  1 ) ) )
44 eluznn 9720 . . . . . . . . . . 11  |-  ( ( ( M  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( M  +  1
) ) )  -> 
k  e.  NN )
4542, 43, 44syl2an 289 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  NN )
4645, 10syldan 282 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  k )  e.  CC )
4741, 46fsumcl 11653 . . . . . . . 8  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  e.  CC )
4834, 39, 47subaddd 8400 . . . . . . 7  |-  ( ph  ->  ( ( sum_ k  e.  ( 1 ... N
) ( G `  k )  -  sum_ k  e.  ( 1 ... M ) ( G `  k ) )  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k )  <->  ( sum_ k  e.  ( 1 ... M ) ( G `  k )  +  sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) )  =  sum_ k  e.  ( 1 ... N ) ( G `  k ) ) )
4933, 48mpbird 167 . . . . . 6  |-  ( ph  ->  ( sum_ k  e.  ( 1 ... N ) ( G `  k
)  -  sum_ k  e.  ( 1 ... M
) ( G `  k ) )  = 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) )
5016, 49eqtr3d 2239 . . . . 5  |-  ( ph  ->  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
)  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k ) )
5145, 9syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  k )  e.  RR )
5241, 51fsumrecl 11654 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  e.  RR )
5350, 52eqeltrd 2281 . . . 4  |-  ( ph  ->  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
)  e.  RR )
5442nnzd 9493 . . . . . . 7  |-  ( ph  ->  ( M  +  1 )  e.  ZZ )
5554, 28fzfigd 10574 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  e.  Fin )
56 cvgcmp2n.ge0 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  0  <_ 
( G `  k
) )
5745, 56syldan 282 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  0  <_  ( G `  k
) )
5855, 51, 57fsumge0 11712 . . . . 5  |-  ( ph  ->  0  <_  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( G `  k ) )
5958, 50breqtrrd 4071 . . . 4  |-  ( ph  ->  0  <_  ( (  seq 1 (  +  ,  G ) `  N
)  -  (  seq 1 (  +  ,  G ) `  M
) ) )
6053, 59absidd 11420 . . 3  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  =  ( (  seq 1
(  +  ,  G
) `  N )  -  (  seq 1
(  +  ,  G
) `  M )
) )
6160, 50eqtrd 2237 . 2  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  = 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
) )
62 halfre 9249 . . . . . . 7  |-  ( 1  /  2 )  e.  RR
6362a1i 9 . . . . . 6  |-  ( ph  ->  ( 1  /  2
)  e.  RR )
6442nnnn0d 9347 . . . . . 6  |-  ( ph  ->  ( M  +  1 )  e.  NN0 )
6563, 64reexpcld 10833 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( M  +  1 ) )  e.  RR )
665peano2nnd 9050 . . . . . . 7  |-  ( ph  ->  ( N  +  1 )  e.  NN )
6766nnnn0d 9347 . . . . . 6  |-  ( ph  ->  ( N  +  1 )  e.  NN0 )
6863, 67reexpcld 10833 . . . . 5  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( N  +  1 ) )  e.  RR )
6965, 68resubcld 8452 . . . 4  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  e.  RR )
70 1mhlfehlf 9254 . . . . . 6  |-  ( 1  -  ( 1  / 
2 ) )  =  ( 1  /  2
)
71 2rp 9779 . . . . . . 7  |-  2  e.  RR+
72 rpreccl 9801 . . . . . . 7  |-  ( 2  e.  RR+  ->  ( 1  /  2 )  e.  RR+ )
7371, 72ax-mp 5 . . . . . 6  |-  ( 1  /  2 )  e.  RR+
7470, 73eqeltri 2277 . . . . 5  |-  ( 1  -  ( 1  / 
2 ) )  e.  RR+
7574a1i 9 . . . 4  |-  ( ph  ->  ( 1  -  (
1  /  2 ) )  e.  RR+ )
7669, 75rerpdivcld 9849 . . 3  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  e.  RR )
7771a1i 9 . . . . 5  |-  ( ph  ->  2  e.  RR+ )
782nnrpd 9815 . . . . 5  |-  ( ph  ->  M  e.  RR+ )
7977, 78rpdivcld 9835 . . . 4  |-  ( ph  ->  ( 2  /  M
)  e.  RR+ )
8079rpred 9817 . . 3  |-  ( ph  ->  ( 2  /  M
)  e.  RR )
8171a1i 9 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  2  e.  RR+ )
8245nnzd 9493 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ZZ )
8381, 82rpexpcld 10840 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
2 ^ k )  e.  RR+ )
8483rprecred 9829 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
1  /  ( 2 ^ k ) )  e.  RR )
85 cvgcmp2n.lt . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( G `
 k )  <_ 
( 1  /  (
2 ^ k ) ) )
8645, 85syldan 282 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( G `  k )  <_  ( 1  /  (
2 ^ k ) ) )
8741, 51, 84, 86fsumle 11716 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( 1  / 
( 2 ^ k
) ) )
88 2cnd 9108 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  2  e.  CC )
8981rpap0d 9823 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  2 #  0 )
9088, 89, 82exprecapd 10824 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
( 1  /  2
) ^ k )  =  ( 1  / 
( 2 ^ k
) ) )
9190eqcomd 2210 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  (
1  /  ( 2 ^ k ) )  =  ( ( 1  /  2 ) ^
k ) )
9291sumeq2dv 11621 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( 1  /  (
2 ^ k ) )  =  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( ( 1  /  2 ) ^
k ) )
9387, 92breqtrd 4069 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  sum_ k  e.  ( ( M  + 
1 ) ... N
) ( ( 1  /  2 ) ^
k ) )
94 fzval3 10331 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( M  +  1 ) ... N )  =  ( ( M  +  1 )..^ ( N  +  1 ) ) )
9528, 94syl 14 . . . . . 6  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  =  ( ( M  +  1 )..^ ( N  +  1 ) ) )
9695sumeq1d 11619 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( ( 1  / 
2 ) ^ k
)  =  sum_ k  e.  ( ( M  + 
1 )..^ ( N  +  1 ) ) ( ( 1  / 
2 ) ^ k
) )
9793, 96breqtrd 4069 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  sum_ k  e.  ( ( M  + 
1 )..^ ( N  +  1 ) ) ( ( 1  / 
2 ) ^ k
) )
98 halfcn 9250 . . . . . 6  |-  ( 1  /  2 )  e.  CC
9998a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
)  e.  CC )
100 1re 8070 . . . . . . 7  |-  1  e.  RR
101 halflt1 9253 . . . . . . 7  |-  ( 1  /  2 )  <  1
10262, 100, 101ltapii 8707 . . . . . 6  |-  ( 1  /  2 ) #  1
103102a1i 9 . . . . 5  |-  ( ph  ->  ( 1  /  2
) #  1 )
104 eluzp1p1 9673 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
1053, 104syl 14 . . . . 5  |-  ( ph  ->  ( N  +  1 )  e.  ( ZZ>= `  ( M  +  1
) ) )
10699, 103, 64, 105geosergap 11759 . . . 4  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 )..^ ( N  + 
1 ) ) ( ( 1  /  2
) ^ k )  =  ( ( ( ( 1  /  2
) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^
( N  +  1 ) ) )  / 
( 1  -  (
1  /  2 ) ) ) )
10797, 106breqtrd 4069 . . 3  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <_  ( (
( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  /  ( 1  -  ( 1  /  2
) ) ) )
10873a1i 9 . . . . . . . 8  |-  ( ph  ->  ( 1  /  2
)  e.  RR+ )
10928peano2zd 9497 . . . . . . . 8  |-  ( ph  ->  ( N  +  1 )  e.  ZZ )
110108, 109rpexpcld 10840 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( N  +  1 ) )  e.  RR+ )
111110rpred 9817 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( N  +  1 ) )  e.  RR )
11265, 111resubcld 8452 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  e.  RR )
1132nnrecred 9082 . . . . 5  |-  ( ph  ->  ( 1  /  M
)  e.  RR )
11465, 110ltsubrpd 9850 . . . . . 6  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  <  ( ( 1  /  2 ) ^ ( M  + 
1 ) ) )
115 2cnd 9108 . . . . . . . 8  |-  ( ph  ->  2  e.  CC )
11677rpap0d 9823 . . . . . . . 8  |-  ( ph  ->  2 #  0 )
117115, 116, 40exprecapd 10824 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( M  +  1 ) )  =  ( 1  /  ( 2 ^ ( M  +  1 ) ) ) )
11842nnred 9048 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  e.  RR )
11977, 40rpexpcld 10840 . . . . . . . . . 10  |-  ( ph  ->  ( 2 ^ ( M  +  1 ) )  e.  RR+ )
120119rpred 9817 . . . . . . . . 9  |-  ( ph  ->  ( 2 ^ ( M  +  1 ) )  e.  RR )
121 2z 9399 . . . . . . . . . . . 12  |-  2  e.  ZZ
122 uzid 9661 . . . . . . . . . . . 12  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
123121, 122ax-mp 5 . . . . . . . . . . 11  |-  2  e.  ( ZZ>= `  2 )
124123a1i 9 . . . . . . . . . 10  |-  ( ph  ->  2  e.  ( ZZ>= ` 
2 ) )
125 bernneq3 10805 . . . . . . . . . 10  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  ( M  +  1 )  e.  NN0 )  -> 
( M  +  1 )  <  ( 2 ^ ( M  + 
1 ) ) )
126124, 64, 125syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( M  +  1 )  <  ( 2 ^ ( M  + 
1 ) ) )
12717, 118, 120, 18, 126lttrd 8197 . . . . . . . 8  |-  ( ph  ->  M  <  ( 2 ^ ( M  + 
1 ) ) )
12878, 119ltrecd 9836 . . . . . . . 8  |-  ( ph  ->  ( M  <  (
2 ^ ( M  +  1 ) )  <-> 
( 1  /  (
2 ^ ( M  +  1 ) ) )  <  ( 1  /  M ) ) )
129127, 128mpbid 147 . . . . . . 7  |-  ( ph  ->  ( 1  /  (
2 ^ ( M  +  1 ) ) )  <  ( 1  /  M ) )
130117, 129eqbrtrd 4065 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
2 ) ^ ( M  +  1 ) )  <  ( 1  /  M ) )
131112, 65, 113, 114, 130lttrd 8197 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  <  ( 1  /  M ) )
132112, 113, 77, 131ltmul1dd 9873 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  x.  2 )  <  ( ( 1  /  M )  x.  2 ) )
13370oveq2i 5954 . . . . . 6  |-  ( ( ( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  /  ( 1  -  ( 1  /  2
) ) )  =  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  /  2 ) )
134112recnd 8100 . . . . . . 7  |-  ( ph  ->  ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  e.  CC )
135 1cnd 8087 . . . . . . 7  |-  ( ph  ->  1  e.  CC )
136 1ap0 8662 . . . . . . . 8  |-  1 #  0
137136a1i 9 . . . . . . 7  |-  ( ph  ->  1 #  0 )
138134, 135, 115, 137, 116divdivap2d 8895 . . . . . 6  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  /  2 ) )  =  ( ( ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  x.  2 )  /  1 ) )
139133, 138eqtrid 2249 . . . . 5  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  =  ( ( ( ( ( 1  /  2 ) ^
( M  +  1 ) )  -  (
( 1  /  2
) ^ ( N  +  1 ) ) )  x.  2 )  /  1 ) )
140134, 115mulcld 8092 . . . . . 6  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  x.  2 )  e.  CC )
141140div1d 8852 . . . . 5  |-  ( ph  ->  ( ( ( ( ( 1  /  2
) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^
( N  +  1 ) ) )  x.  2 )  /  1
)  =  ( ( ( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  x.  2 ) )
142139, 141eqtrd 2237 . . . 4  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  =  ( ( ( ( 1  / 
2 ) ^ ( M  +  1 ) )  -  ( ( 1  /  2 ) ^ ( N  + 
1 ) ) )  x.  2 ) )
14317recnd 8100 . . . . 5  |-  ( ph  ->  M  e.  CC )
1442nnap0d 9081 . . . . 5  |-  ( ph  ->  M #  0 )
145115, 143, 144divrecap2d 8866 . . . 4  |-  ( ph  ->  ( 2  /  M
)  =  ( ( 1  /  M )  x.  2 ) )
146132, 142, 1453brtr4d 4075 . . 3  |-  ( ph  ->  ( ( ( ( 1  /  2 ) ^ ( M  + 
1 ) )  -  ( ( 1  / 
2 ) ^ ( N  +  1 ) ) )  /  (
1  -  ( 1  /  2 ) ) )  <  ( 2  /  M ) )
14752, 76, 80, 107, 146lelttrd 8196 . 2  |-  ( ph  -> 
sum_ k  e.  ( ( M  +  1 ) ... N ) ( G `  k
)  <  ( 2  /  M ) )
14861, 147eqbrtrd 4065 1  |-  ( ph  ->  ( abs `  (
(  seq 1 (  +  ,  G ) `  N )  -  (  seq 1 (  +  ,  G ) `  M
) ) )  < 
( 2  /  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175    u. cun 3163    i^i cin 3164   (/)c0 3459   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923   0cc0 7924   1c1 7925    + caddc 7927    x. cmul 7929    < clt 8106    <_ cle 8107    - cmin 8242   # cap 8653    / cdiv 8744   NNcn 9035   2c2 9086   NN0cn0 9294   ZZcz 9371   ZZ>=cuz 9647   RR+crp 9774   ...cfz 10129  ..^cfzo 10263    seqcseq 10590   ^cexp 10681   abscabs 11250   sum_csu 11606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-ico 10015  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-clim 11532  df-sumdc 11607
This theorem is referenced by:  cvgcmp2n  15905
  Copyright terms: Public domain W3C validator