Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version |
Description: Lemma for cvgcmp2n 13912. The partial sums get closer to each other as we go further out. The proof proceeds by rewriting as the sum of and a term which gets smaller as gets large. (Contributed by Jim Kingdon, 25-Aug-2023.) |
Ref | Expression |
---|---|
cvgcmp2n.cl | |
cvgcmp2n.ge0 | |
cvgcmp2n.lt | |
cvgcmp2nlemabs.m | |
cvgcmp2nlemabs.n |
Ref | Expression |
---|---|
cvgcmp2nlemabs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2166 | . . . . . . . 8 | |
2 | cvgcmp2nlemabs.m | . . . . . . . . . 10 | |
3 | cvgcmp2nlemabs.n | . . . . . . . . . 10 | |
4 | eluznn 9538 | . . . . . . . . . 10 | |
5 | 2, 3, 4 | syl2anc 409 | . . . . . . . . 9 |
6 | elnnuz 9502 | . . . . . . . . 9 | |
7 | 5, 6 | sylib 121 | . . . . . . . 8 |
8 | elnnuz 9502 | . . . . . . . . 9 | |
9 | cvgcmp2n.cl | . . . . . . . . . 10 | |
10 | 9 | recnd 7927 | . . . . . . . . 9 |
11 | 8, 10 | sylan2br 286 | . . . . . . . 8 |
12 | 1, 7, 11 | fsum3ser 11338 | . . . . . . 7 |
13 | nnuz 9501 | . . . . . . . . 9 | |
14 | 2, 13 | eleqtrdi 2259 | . . . . . . . 8 |
15 | 1, 14, 11 | fsum3ser 11338 | . . . . . . 7 |
16 | 12, 15 | oveq12d 5860 | . . . . . 6 |
17 | 2 | nnred 8870 | . . . . . . . . . . 11 |
18 | 17 | ltp1d 8825 | . . . . . . . . . 10 |
19 | fzdisj 9987 | . . . . . . . . . 10 | |
20 | 18, 19 | syl 14 | . . . . . . . . 9 |
21 | eluzle 9478 | . . . . . . . . . . . 12 | |
22 | 3, 21 | syl 14 | . . . . . . . . . . 11 |
23 | elfz1b 10025 | . . . . . . . . . . 11 | |
24 | 2, 5, 22, 23 | syl3anbrc 1171 | . . . . . . . . . 10 |
25 | fzsplit 9986 | . . . . . . . . . 10 | |
26 | 24, 25 | syl 14 | . . . . . . . . 9 |
27 | 1zzd 9218 | . . . . . . . . . 10 | |
28 | 5 | nnzd 9312 | . . . . . . . . . 10 |
29 | 27, 28 | fzfigd 10366 | . . . . . . . . 9 |
30 | elfznn 9989 | . . . . . . . . . 10 | |
31 | 30, 10 | sylan2 284 | . . . . . . . . 9 |
32 | 20, 26, 29, 31 | fsumsplit 11348 | . . . . . . . 8 |
33 | 32 | eqcomd 2171 | . . . . . . 7 |
34 | 29, 31 | fsumcl 11341 | . . . . . . . 8 |
35 | 2 | nnzd 9312 | . . . . . . . . . 10 |
36 | 27, 35 | fzfigd 10366 | . . . . . . . . 9 |
37 | elfznn 9989 | . . . . . . . . . 10 | |
38 | 37, 10 | sylan2 284 | . . . . . . . . 9 |
39 | 36, 38 | fsumcl 11341 | . . . . . . . 8 |
40 | 35 | peano2zd 9316 | . . . . . . . . . 10 |
41 | 40, 28 | fzfigd 10366 | . . . . . . . . 9 |
42 | 2 | peano2nnd 8872 | . . . . . . . . . . 11 |
43 | elfzuz 9956 | . . . . . . . . . . 11 | |
44 | eluznn 9538 | . . . . . . . . . . 11 | |
45 | 42, 43, 44 | syl2an 287 | . . . . . . . . . 10 |
46 | 45, 10 | syldan 280 | . . . . . . . . 9 |
47 | 41, 46 | fsumcl 11341 | . . . . . . . 8 |
48 | 34, 39, 47 | subaddd 8227 | . . . . . . 7 |
49 | 33, 48 | mpbird 166 | . . . . . 6 |
50 | 16, 49 | eqtr3d 2200 | . . . . 5 |
51 | 45, 9 | syldan 280 | . . . . . 6 |
52 | 41, 51 | fsumrecl 11342 | . . . . 5 |
53 | 50, 52 | eqeltrd 2243 | . . . 4 |
54 | 42 | nnzd 9312 | . . . . . . 7 |
55 | 54, 28 | fzfigd 10366 | . . . . . 6 |
56 | cvgcmp2n.ge0 | . . . . . . 7 | |
57 | 45, 56 | syldan 280 | . . . . . 6 |
58 | 55, 51, 57 | fsumge0 11400 | . . . . 5 |
59 | 58, 50 | breqtrrd 4010 | . . . 4 |
60 | 53, 59 | absidd 11109 | . . 3 |
61 | 60, 50 | eqtrd 2198 | . 2 |
62 | halfre 9070 | . . . . . . 7 | |
63 | 62 | a1i 9 | . . . . . 6 |
64 | 42 | nnnn0d 9167 | . . . . . 6 |
65 | 63, 64 | reexpcld 10605 | . . . . 5 |
66 | 5 | peano2nnd 8872 | . . . . . . 7 |
67 | 66 | nnnn0d 9167 | . . . . . 6 |
68 | 63, 67 | reexpcld 10605 | . . . . 5 |
69 | 65, 68 | resubcld 8279 | . . . 4 |
70 | 1mhlfehlf 9075 | . . . . . 6 | |
71 | 2rp 9594 | . . . . . . 7 | |
72 | rpreccl 9616 | . . . . . . 7 | |
73 | 71, 72 | ax-mp 5 | . . . . . 6 |
74 | 70, 73 | eqeltri 2239 | . . . . 5 |
75 | 74 | a1i 9 | . . . 4 |
76 | 69, 75 | rerpdivcld 9664 | . . 3 |
77 | 71 | a1i 9 | . . . . 5 |
78 | 2 | nnrpd 9630 | . . . . 5 |
79 | 77, 78 | rpdivcld 9650 | . . . 4 |
80 | 79 | rpred 9632 | . . 3 |
81 | 71 | a1i 9 | . . . . . . . . 9 |
82 | 45 | nnzd 9312 | . . . . . . . . 9 |
83 | 81, 82 | rpexpcld 10612 | . . . . . . . 8 |
84 | 83 | rprecred 9644 | . . . . . . 7 |
85 | cvgcmp2n.lt | . . . . . . . 8 | |
86 | 45, 85 | syldan 280 | . . . . . . 7 |
87 | 41, 51, 84, 86 | fsumle 11404 | . . . . . 6 |
88 | 2cnd 8930 | . . . . . . . . 9 | |
89 | 81 | rpap0d 9638 | . . . . . . . . 9 # |
90 | 88, 89, 82 | exprecapd 10596 | . . . . . . . 8 |
91 | 90 | eqcomd 2171 | . . . . . . 7 |
92 | 91 | sumeq2dv 11309 | . . . . . 6 |
93 | 87, 92 | breqtrd 4008 | . . . . 5 |
94 | fzval3 10139 | . . . . . . 7 ..^ | |
95 | 28, 94 | syl 14 | . . . . . 6 ..^ |
96 | 95 | sumeq1d 11307 | . . . . 5 ..^ |
97 | 93, 96 | breqtrd 4008 | . . . 4 ..^ |
98 | halfcn 9071 | . . . . . 6 | |
99 | 98 | a1i 9 | . . . . 5 |
100 | 1re 7898 | . . . . . . 7 | |
101 | halflt1 9074 | . . . . . . 7 | |
102 | 62, 100, 101 | ltapii 8533 | . . . . . 6 # |
103 | 102 | a1i 9 | . . . . 5 # |
104 | eluzp1p1 9491 | . . . . . 6 | |
105 | 3, 104 | syl 14 | . . . . 5 |
106 | 99, 103, 64, 105 | geosergap 11447 | . . . 4 ..^ |
107 | 97, 106 | breqtrd 4008 | . . 3 |
108 | 73 | a1i 9 | . . . . . . . 8 |
109 | 28 | peano2zd 9316 | . . . . . . . 8 |
110 | 108, 109 | rpexpcld 10612 | . . . . . . 7 |
111 | 110 | rpred 9632 | . . . . . 6 |
112 | 65, 111 | resubcld 8279 | . . . . 5 |
113 | 2 | nnrecred 8904 | . . . . 5 |
114 | 65, 110 | ltsubrpd 9665 | . . . . . 6 |
115 | 2cnd 8930 | . . . . . . . 8 | |
116 | 77 | rpap0d 9638 | . . . . . . . 8 # |
117 | 115, 116, 40 | exprecapd 10596 | . . . . . . 7 |
118 | 42 | nnred 8870 | . . . . . . . . 9 |
119 | 77, 40 | rpexpcld 10612 | . . . . . . . . . 10 |
120 | 119 | rpred 9632 | . . . . . . . . 9 |
121 | 2z 9219 | . . . . . . . . . . . 12 | |
122 | uzid 9480 | . . . . . . . . . . . 12 | |
123 | 121, 122 | ax-mp 5 | . . . . . . . . . . 11 |
124 | 123 | a1i 9 | . . . . . . . . . 10 |
125 | bernneq3 10577 | . . . . . . . . . 10 | |
126 | 124, 64, 125 | syl2anc 409 | . . . . . . . . 9 |
127 | 17, 118, 120, 18, 126 | lttrd 8024 | . . . . . . . 8 |
128 | 78, 119 | ltrecd 9651 | . . . . . . . 8 |
129 | 127, 128 | mpbid 146 | . . . . . . 7 |
130 | 117, 129 | eqbrtrd 4004 | . . . . . 6 |
131 | 112, 65, 113, 114, 130 | lttrd 8024 | . . . . 5 |
132 | 112, 113, 77, 131 | ltmul1dd 9688 | . . . 4 |
133 | 70 | oveq2i 5853 | . . . . . 6 |
134 | 112 | recnd 7927 | . . . . . . 7 |
135 | 1cnd 7915 | . . . . . . 7 | |
136 | 1ap0 8488 | . . . . . . . 8 # | |
137 | 136 | a1i 9 | . . . . . . 7 # |
138 | 134, 135, 115, 137, 116 | divdivap2d 8719 | . . . . . 6 |
139 | 133, 138 | syl5eq 2211 | . . . . 5 |
140 | 134, 115 | mulcld 7919 | . . . . . 6 |
141 | 140 | div1d 8676 | . . . . 5 |
142 | 139, 141 | eqtrd 2198 | . . . 4 |
143 | 17 | recnd 7927 | . . . . 5 |
144 | 2 | nnap0d 8903 | . . . . 5 # |
145 | 115, 143, 144 | divrecap2d 8690 | . . . 4 |
146 | 132, 142, 145 | 3brtr4d 4014 | . . 3 |
147 | 52, 76, 80, 107, 146 | lelttrd 8023 | . 2 |
148 | 61, 147 | eqbrtrd 4004 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cun 3114 cin 3115 c0 3409 class class class wbr 3982 cfv 5188 (class class class)co 5842 cc 7751 cr 7752 cc0 7753 c1 7754 caddc 7756 cmul 7758 clt 7933 cle 7934 cmin 8069 # cap 8479 cdiv 8568 cn 8857 c2 8908 cn0 9114 cz 9191 cuz 9466 crp 9589 cfz 9944 ..^cfzo 10077 cseq 10380 cexp 10454 cabs 10939 csu 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-ihash 10689 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 |
This theorem is referenced by: cvgcmp2n 13912 |
Copyright terms: Public domain | W3C validator |