| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version | ||
| Description: Lemma for cvgcmp2n 16113. The partial sums get closer to each other
as
we go further out. The proof proceeds by rewriting
|
| Ref | Expression |
|---|---|
| cvgcmp2n.cl |
|
| cvgcmp2n.ge0 |
|
| cvgcmp2n.lt |
|
| cvgcmp2nlemabs.m |
|
| cvgcmp2nlemabs.n |
|
| Ref | Expression |
|---|---|
| cvgcmp2nlemabs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2207 |
. . . . . . . 8
| |
| 2 | cvgcmp2nlemabs.m |
. . . . . . . . . 10
| |
| 3 | cvgcmp2nlemabs.n |
. . . . . . . . . 10
| |
| 4 | eluznn 9741 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
|
| 6 | elnnuz 9705 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylib 122 |
. . . . . . . 8
|
| 8 | elnnuz 9705 |
. . . . . . . . 9
| |
| 9 | cvgcmp2n.cl |
. . . . . . . . . 10
| |
| 10 | 9 | recnd 8121 |
. . . . . . . . 9
|
| 11 | 8, 10 | sylan2br 288 |
. . . . . . . 8
|
| 12 | 1, 7, 11 | fsum3ser 11783 |
. . . . . . 7
|
| 13 | nnuz 9704 |
. . . . . . . . 9
| |
| 14 | 2, 13 | eleqtrdi 2299 |
. . . . . . . 8
|
| 15 | 1, 14, 11 | fsum3ser 11783 |
. . . . . . 7
|
| 16 | 12, 15 | oveq12d 5975 |
. . . . . 6
|
| 17 | 2 | nnred 9069 |
. . . . . . . . . . 11
|
| 18 | 17 | ltp1d 9023 |
. . . . . . . . . 10
|
| 19 | fzdisj 10194 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
|
| 21 | eluzle 9680 |
. . . . . . . . . . . 12
| |
| 22 | 3, 21 | syl 14 |
. . . . . . . . . . 11
|
| 23 | elfz1b 10232 |
. . . . . . . . . . 11
| |
| 24 | 2, 5, 22, 23 | syl3anbrc 1184 |
. . . . . . . . . 10
|
| 25 | fzsplit 10193 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 1zzd 9419 |
. . . . . . . . . 10
| |
| 28 | 5 | nnzd 9514 |
. . . . . . . . . 10
|
| 29 | 27, 28 | fzfigd 10598 |
. . . . . . . . 9
|
| 30 | elfznn 10196 |
. . . . . . . . . 10
| |
| 31 | 30, 10 | sylan2 286 |
. . . . . . . . 9
|
| 32 | 20, 26, 29, 31 | fsumsplit 11793 |
. . . . . . . 8
|
| 33 | 32 | eqcomd 2212 |
. . . . . . 7
|
| 34 | 29, 31 | fsumcl 11786 |
. . . . . . . 8
|
| 35 | 2 | nnzd 9514 |
. . . . . . . . . 10
|
| 36 | 27, 35 | fzfigd 10598 |
. . . . . . . . 9
|
| 37 | elfznn 10196 |
. . . . . . . . . 10
| |
| 38 | 37, 10 | sylan2 286 |
. . . . . . . . 9
|
| 39 | 36, 38 | fsumcl 11786 |
. . . . . . . 8
|
| 40 | 35 | peano2zd 9518 |
. . . . . . . . . 10
|
| 41 | 40, 28 | fzfigd 10598 |
. . . . . . . . 9
|
| 42 | 2 | peano2nnd 9071 |
. . . . . . . . . . 11
|
| 43 | elfzuz 10163 |
. . . . . . . . . . 11
| |
| 44 | eluznn 9741 |
. . . . . . . . . . 11
| |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . 10
|
| 46 | 45, 10 | syldan 282 |
. . . . . . . . 9
|
| 47 | 41, 46 | fsumcl 11786 |
. . . . . . . 8
|
| 48 | 34, 39, 47 | subaddd 8421 |
. . . . . . 7
|
| 49 | 33, 48 | mpbird 167 |
. . . . . 6
|
| 50 | 16, 49 | eqtr3d 2241 |
. . . . 5
|
| 51 | 45, 9 | syldan 282 |
. . . . . 6
|
| 52 | 41, 51 | fsumrecl 11787 |
. . . . 5
|
| 53 | 50, 52 | eqeltrd 2283 |
. . . 4
|
| 54 | 42 | nnzd 9514 |
. . . . . . 7
|
| 55 | 54, 28 | fzfigd 10598 |
. . . . . 6
|
| 56 | cvgcmp2n.ge0 |
. . . . . . 7
| |
| 57 | 45, 56 | syldan 282 |
. . . . . 6
|
| 58 | 55, 51, 57 | fsumge0 11845 |
. . . . 5
|
| 59 | 58, 50 | breqtrrd 4079 |
. . . 4
|
| 60 | 53, 59 | absidd 11553 |
. . 3
|
| 61 | 60, 50 | eqtrd 2239 |
. 2
|
| 62 | halfre 9270 |
. . . . . . 7
| |
| 63 | 62 | a1i 9 |
. . . . . 6
|
| 64 | 42 | nnnn0d 9368 |
. . . . . 6
|
| 65 | 63, 64 | reexpcld 10857 |
. . . . 5
|
| 66 | 5 | peano2nnd 9071 |
. . . . . . 7
|
| 67 | 66 | nnnn0d 9368 |
. . . . . 6
|
| 68 | 63, 67 | reexpcld 10857 |
. . . . 5
|
| 69 | 65, 68 | resubcld 8473 |
. . . 4
|
| 70 | 1mhlfehlf 9275 |
. . . . . 6
| |
| 71 | 2rp 9800 |
. . . . . . 7
| |
| 72 | rpreccl 9822 |
. . . . . . 7
| |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
|
| 74 | 70, 73 | eqeltri 2279 |
. . . . 5
|
| 75 | 74 | a1i 9 |
. . . 4
|
| 76 | 69, 75 | rerpdivcld 9870 |
. . 3
|
| 77 | 71 | a1i 9 |
. . . . 5
|
| 78 | 2 | nnrpd 9836 |
. . . . 5
|
| 79 | 77, 78 | rpdivcld 9856 |
. . . 4
|
| 80 | 79 | rpred 9838 |
. . 3
|
| 81 | 71 | a1i 9 |
. . . . . . . . 9
|
| 82 | 45 | nnzd 9514 |
. . . . . . . . 9
|
| 83 | 81, 82 | rpexpcld 10864 |
. . . . . . . 8
|
| 84 | 83 | rprecred 9850 |
. . . . . . 7
|
| 85 | cvgcmp2n.lt |
. . . . . . . 8
| |
| 86 | 45, 85 | syldan 282 |
. . . . . . 7
|
| 87 | 41, 51, 84, 86 | fsumle 11849 |
. . . . . 6
|
| 88 | 2cnd 9129 |
. . . . . . . . 9
| |
| 89 | 81 | rpap0d 9844 |
. . . . . . . . 9
|
| 90 | 88, 89, 82 | exprecapd 10848 |
. . . . . . . 8
|
| 91 | 90 | eqcomd 2212 |
. . . . . . 7
|
| 92 | 91 | sumeq2dv 11754 |
. . . . . 6
|
| 93 | 87, 92 | breqtrd 4077 |
. . . . 5
|
| 94 | fzval3 10355 |
. . . . . . 7
| |
| 95 | 28, 94 | syl 14 |
. . . . . 6
|
| 96 | 95 | sumeq1d 11752 |
. . . . 5
|
| 97 | 93, 96 | breqtrd 4077 |
. . . 4
|
| 98 | halfcn 9271 |
. . . . . 6
| |
| 99 | 98 | a1i 9 |
. . . . 5
|
| 100 | 1re 8091 |
. . . . . . 7
| |
| 101 | halflt1 9274 |
. . . . . . 7
| |
| 102 | 62, 100, 101 | ltapii 8728 |
. . . . . 6
|
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | eluzp1p1 9694 |
. . . . . 6
| |
| 105 | 3, 104 | syl 14 |
. . . . 5
|
| 106 | 99, 103, 64, 105 | geosergap 11892 |
. . . 4
|
| 107 | 97, 106 | breqtrd 4077 |
. . 3
|
| 108 | 73 | a1i 9 |
. . . . . . . 8
|
| 109 | 28 | peano2zd 9518 |
. . . . . . . 8
|
| 110 | 108, 109 | rpexpcld 10864 |
. . . . . . 7
|
| 111 | 110 | rpred 9838 |
. . . . . 6
|
| 112 | 65, 111 | resubcld 8473 |
. . . . 5
|
| 113 | 2 | nnrecred 9103 |
. . . . 5
|
| 114 | 65, 110 | ltsubrpd 9871 |
. . . . . 6
|
| 115 | 2cnd 9129 |
. . . . . . . 8
| |
| 116 | 77 | rpap0d 9844 |
. . . . . . . 8
|
| 117 | 115, 116, 40 | exprecapd 10848 |
. . . . . . 7
|
| 118 | 42 | nnred 9069 |
. . . . . . . . 9
|
| 119 | 77, 40 | rpexpcld 10864 |
. . . . . . . . . 10
|
| 120 | 119 | rpred 9838 |
. . . . . . . . 9
|
| 121 | 2z 9420 |
. . . . . . . . . . . 12
| |
| 122 | uzid 9682 |
. . . . . . . . . . . 12
| |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . 11
|
| 124 | 123 | a1i 9 |
. . . . . . . . . 10
|
| 125 | bernneq3 10829 |
. . . . . . . . . 10
| |
| 126 | 124, 64, 125 | syl2anc 411 |
. . . . . . . . 9
|
| 127 | 17, 118, 120, 18, 126 | lttrd 8218 |
. . . . . . . 8
|
| 128 | 78, 119 | ltrecd 9857 |
. . . . . . . 8
|
| 129 | 127, 128 | mpbid 147 |
. . . . . . 7
|
| 130 | 117, 129 | eqbrtrd 4073 |
. . . . . 6
|
| 131 | 112, 65, 113, 114, 130 | lttrd 8218 |
. . . . 5
|
| 132 | 112, 113, 77, 131 | ltmul1dd 9894 |
. . . 4
|
| 133 | 70 | oveq2i 5968 |
. . . . . 6
|
| 134 | 112 | recnd 8121 |
. . . . . . 7
|
| 135 | 1cnd 8108 |
. . . . . . 7
| |
| 136 | 1ap0 8683 |
. . . . . . . 8
| |
| 137 | 136 | a1i 9 |
. . . . . . 7
|
| 138 | 134, 135, 115, 137, 116 | divdivap2d 8916 |
. . . . . 6
|
| 139 | 133, 138 | eqtrid 2251 |
. . . . 5
|
| 140 | 134, 115 | mulcld 8113 |
. . . . . 6
|
| 141 | 140 | div1d 8873 |
. . . . 5
|
| 142 | 139, 141 | eqtrd 2239 |
. . . 4
|
| 143 | 17 | recnd 8121 |
. . . . 5
|
| 144 | 2 | nnap0d 9102 |
. . . . 5
|
| 145 | 115, 143, 144 | divrecap2d 8887 |
. . . 4
|
| 146 | 132, 142, 145 | 3brtr4d 4083 |
. . 3
|
| 147 | 52, 76, 80, 107, 146 | lelttrd 8217 |
. 2
|
| 148 | 61, 147 | eqbrtrd 4073 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-ico 10036 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 |
| This theorem is referenced by: cvgcmp2n 16113 |
| Copyright terms: Public domain | W3C validator |