| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version | ||
| Description: Lemma for cvgcmp2n 15764. The partial sums get closer to each other
as
we go further out. The proof proceeds by rewriting
|
| Ref | Expression |
|---|---|
| cvgcmp2n.cl |
|
| cvgcmp2n.ge0 |
|
| cvgcmp2n.lt |
|
| cvgcmp2nlemabs.m |
|
| cvgcmp2nlemabs.n |
|
| Ref | Expression |
|---|---|
| cvgcmp2nlemabs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2197 |
. . . . . . . 8
| |
| 2 | cvgcmp2nlemabs.m |
. . . . . . . . . 10
| |
| 3 | cvgcmp2nlemabs.n |
. . . . . . . . . 10
| |
| 4 | eluznn 9691 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
|
| 6 | elnnuz 9655 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylib 122 |
. . . . . . . 8
|
| 8 | elnnuz 9655 |
. . . . . . . . 9
| |
| 9 | cvgcmp2n.cl |
. . . . . . . . . 10
| |
| 10 | 9 | recnd 8072 |
. . . . . . . . 9
|
| 11 | 8, 10 | sylan2br 288 |
. . . . . . . 8
|
| 12 | 1, 7, 11 | fsum3ser 11579 |
. . . . . . 7
|
| 13 | nnuz 9654 |
. . . . . . . . 9
| |
| 14 | 2, 13 | eleqtrdi 2289 |
. . . . . . . 8
|
| 15 | 1, 14, 11 | fsum3ser 11579 |
. . . . . . 7
|
| 16 | 12, 15 | oveq12d 5943 |
. . . . . 6
|
| 17 | 2 | nnred 9020 |
. . . . . . . . . . 11
|
| 18 | 17 | ltp1d 8974 |
. . . . . . . . . 10
|
| 19 | fzdisj 10144 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
|
| 21 | eluzle 9630 |
. . . . . . . . . . . 12
| |
| 22 | 3, 21 | syl 14 |
. . . . . . . . . . 11
|
| 23 | elfz1b 10182 |
. . . . . . . . . . 11
| |
| 24 | 2, 5, 22, 23 | syl3anbrc 1183 |
. . . . . . . . . 10
|
| 25 | fzsplit 10143 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 1zzd 9370 |
. . . . . . . . . 10
| |
| 28 | 5 | nnzd 9464 |
. . . . . . . . . 10
|
| 29 | 27, 28 | fzfigd 10540 |
. . . . . . . . 9
|
| 30 | elfznn 10146 |
. . . . . . . . . 10
| |
| 31 | 30, 10 | sylan2 286 |
. . . . . . . . 9
|
| 32 | 20, 26, 29, 31 | fsumsplit 11589 |
. . . . . . . 8
|
| 33 | 32 | eqcomd 2202 |
. . . . . . 7
|
| 34 | 29, 31 | fsumcl 11582 |
. . . . . . . 8
|
| 35 | 2 | nnzd 9464 |
. . . . . . . . . 10
|
| 36 | 27, 35 | fzfigd 10540 |
. . . . . . . . 9
|
| 37 | elfznn 10146 |
. . . . . . . . . 10
| |
| 38 | 37, 10 | sylan2 286 |
. . . . . . . . 9
|
| 39 | 36, 38 | fsumcl 11582 |
. . . . . . . 8
|
| 40 | 35 | peano2zd 9468 |
. . . . . . . . . 10
|
| 41 | 40, 28 | fzfigd 10540 |
. . . . . . . . 9
|
| 42 | 2 | peano2nnd 9022 |
. . . . . . . . . . 11
|
| 43 | elfzuz 10113 |
. . . . . . . . . . 11
| |
| 44 | eluznn 9691 |
. . . . . . . . . . 11
| |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . 10
|
| 46 | 45, 10 | syldan 282 |
. . . . . . . . 9
|
| 47 | 41, 46 | fsumcl 11582 |
. . . . . . . 8
|
| 48 | 34, 39, 47 | subaddd 8372 |
. . . . . . 7
|
| 49 | 33, 48 | mpbird 167 |
. . . . . 6
|
| 50 | 16, 49 | eqtr3d 2231 |
. . . . 5
|
| 51 | 45, 9 | syldan 282 |
. . . . . 6
|
| 52 | 41, 51 | fsumrecl 11583 |
. . . . 5
|
| 53 | 50, 52 | eqeltrd 2273 |
. . . 4
|
| 54 | 42 | nnzd 9464 |
. . . . . . 7
|
| 55 | 54, 28 | fzfigd 10540 |
. . . . . 6
|
| 56 | cvgcmp2n.ge0 |
. . . . . . 7
| |
| 57 | 45, 56 | syldan 282 |
. . . . . 6
|
| 58 | 55, 51, 57 | fsumge0 11641 |
. . . . 5
|
| 59 | 58, 50 | breqtrrd 4062 |
. . . 4
|
| 60 | 53, 59 | absidd 11349 |
. . 3
|
| 61 | 60, 50 | eqtrd 2229 |
. 2
|
| 62 | halfre 9221 |
. . . . . . 7
| |
| 63 | 62 | a1i 9 |
. . . . . 6
|
| 64 | 42 | nnnn0d 9319 |
. . . . . 6
|
| 65 | 63, 64 | reexpcld 10799 |
. . . . 5
|
| 66 | 5 | peano2nnd 9022 |
. . . . . . 7
|
| 67 | 66 | nnnn0d 9319 |
. . . . . 6
|
| 68 | 63, 67 | reexpcld 10799 |
. . . . 5
|
| 69 | 65, 68 | resubcld 8424 |
. . . 4
|
| 70 | 1mhlfehlf 9226 |
. . . . . 6
| |
| 71 | 2rp 9750 |
. . . . . . 7
| |
| 72 | rpreccl 9772 |
. . . . . . 7
| |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
|
| 74 | 70, 73 | eqeltri 2269 |
. . . . 5
|
| 75 | 74 | a1i 9 |
. . . 4
|
| 76 | 69, 75 | rerpdivcld 9820 |
. . 3
|
| 77 | 71 | a1i 9 |
. . . . 5
|
| 78 | 2 | nnrpd 9786 |
. . . . 5
|
| 79 | 77, 78 | rpdivcld 9806 |
. . . 4
|
| 80 | 79 | rpred 9788 |
. . 3
|
| 81 | 71 | a1i 9 |
. . . . . . . . 9
|
| 82 | 45 | nnzd 9464 |
. . . . . . . . 9
|
| 83 | 81, 82 | rpexpcld 10806 |
. . . . . . . 8
|
| 84 | 83 | rprecred 9800 |
. . . . . . 7
|
| 85 | cvgcmp2n.lt |
. . . . . . . 8
| |
| 86 | 45, 85 | syldan 282 |
. . . . . . 7
|
| 87 | 41, 51, 84, 86 | fsumle 11645 |
. . . . . 6
|
| 88 | 2cnd 9080 |
. . . . . . . . 9
| |
| 89 | 81 | rpap0d 9794 |
. . . . . . . . 9
|
| 90 | 88, 89, 82 | exprecapd 10790 |
. . . . . . . 8
|
| 91 | 90 | eqcomd 2202 |
. . . . . . 7
|
| 92 | 91 | sumeq2dv 11550 |
. . . . . 6
|
| 93 | 87, 92 | breqtrd 4060 |
. . . . 5
|
| 94 | fzval3 10297 |
. . . . . . 7
| |
| 95 | 28, 94 | syl 14 |
. . . . . 6
|
| 96 | 95 | sumeq1d 11548 |
. . . . 5
|
| 97 | 93, 96 | breqtrd 4060 |
. . . 4
|
| 98 | halfcn 9222 |
. . . . . 6
| |
| 99 | 98 | a1i 9 |
. . . . 5
|
| 100 | 1re 8042 |
. . . . . . 7
| |
| 101 | halflt1 9225 |
. . . . . . 7
| |
| 102 | 62, 100, 101 | ltapii 8679 |
. . . . . 6
|
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | eluzp1p1 9644 |
. . . . . 6
| |
| 105 | 3, 104 | syl 14 |
. . . . 5
|
| 106 | 99, 103, 64, 105 | geosergap 11688 |
. . . 4
|
| 107 | 97, 106 | breqtrd 4060 |
. . 3
|
| 108 | 73 | a1i 9 |
. . . . . . . 8
|
| 109 | 28 | peano2zd 9468 |
. . . . . . . 8
|
| 110 | 108, 109 | rpexpcld 10806 |
. . . . . . 7
|
| 111 | 110 | rpred 9788 |
. . . . . 6
|
| 112 | 65, 111 | resubcld 8424 |
. . . . 5
|
| 113 | 2 | nnrecred 9054 |
. . . . 5
|
| 114 | 65, 110 | ltsubrpd 9821 |
. . . . . 6
|
| 115 | 2cnd 9080 |
. . . . . . . 8
| |
| 116 | 77 | rpap0d 9794 |
. . . . . . . 8
|
| 117 | 115, 116, 40 | exprecapd 10790 |
. . . . . . 7
|
| 118 | 42 | nnred 9020 |
. . . . . . . . 9
|
| 119 | 77, 40 | rpexpcld 10806 |
. . . . . . . . . 10
|
| 120 | 119 | rpred 9788 |
. . . . . . . . 9
|
| 121 | 2z 9371 |
. . . . . . . . . . . 12
| |
| 122 | uzid 9632 |
. . . . . . . . . . . 12
| |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . 11
|
| 124 | 123 | a1i 9 |
. . . . . . . . . 10
|
| 125 | bernneq3 10771 |
. . . . . . . . . 10
| |
| 126 | 124, 64, 125 | syl2anc 411 |
. . . . . . . . 9
|
| 127 | 17, 118, 120, 18, 126 | lttrd 8169 |
. . . . . . . 8
|
| 128 | 78, 119 | ltrecd 9807 |
. . . . . . . 8
|
| 129 | 127, 128 | mpbid 147 |
. . . . . . 7
|
| 130 | 117, 129 | eqbrtrd 4056 |
. . . . . 6
|
| 131 | 112, 65, 113, 114, 130 | lttrd 8169 |
. . . . 5
|
| 132 | 112, 113, 77, 131 | ltmul1dd 9844 |
. . . 4
|
| 133 | 70 | oveq2i 5936 |
. . . . . 6
|
| 134 | 112 | recnd 8072 |
. . . . . . 7
|
| 135 | 1cnd 8059 |
. . . . . . 7
| |
| 136 | 1ap0 8634 |
. . . . . . . 8
| |
| 137 | 136 | a1i 9 |
. . . . . . 7
|
| 138 | 134, 135, 115, 137, 116 | divdivap2d 8867 |
. . . . . 6
|
| 139 | 133, 138 | eqtrid 2241 |
. . . . 5
|
| 140 | 134, 115 | mulcld 8064 |
. . . . . 6
|
| 141 | 140 | div1d 8824 |
. . . . 5
|
| 142 | 139, 141 | eqtrd 2229 |
. . . 4
|
| 143 | 17 | recnd 8072 |
. . . . 5
|
| 144 | 2 | nnap0d 9053 |
. . . . 5
|
| 145 | 115, 143, 144 | divrecap2d 8838 |
. . . 4
|
| 146 | 132, 142, 145 | 3brtr4d 4066 |
. . 3
|
| 147 | 52, 76, 80, 107, 146 | lelttrd 8168 |
. 2
|
| 148 | 61, 147 | eqbrtrd 4056 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 ax-caucvg 8016 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-n0 9267 df-z 9344 df-uz 9619 df-q 9711 df-rp 9746 df-ico 9986 df-fz 10101 df-fzo 10235 df-seqfrec 10557 df-exp 10648 df-ihash 10885 df-cj 11024 df-re 11025 df-im 11026 df-rsqrt 11180 df-abs 11181 df-clim 11461 df-sumdc 11536 |
| This theorem is referenced by: cvgcmp2n 15764 |
| Copyright terms: Public domain | W3C validator |