| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > cvgcmp2nlemabs | Unicode version | ||
| Description: Lemma for cvgcmp2n 16360. The partial sums get closer to each other
as
we go further out. The proof proceeds by rewriting
|
| Ref | Expression |
|---|---|
| cvgcmp2n.cl |
|
| cvgcmp2n.ge0 |
|
| cvgcmp2n.lt |
|
| cvgcmp2nlemabs.m |
|
| cvgcmp2nlemabs.n |
|
| Ref | Expression |
|---|---|
| cvgcmp2nlemabs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 |
. . . . . . . 8
| |
| 2 | cvgcmp2nlemabs.m |
. . . . . . . . . 10
| |
| 3 | cvgcmp2nlemabs.n |
. . . . . . . . . 10
| |
| 4 | eluznn 9791 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | syl2anc 411 |
. . . . . . . . 9
|
| 6 | elnnuz 9755 |
. . . . . . . . 9
| |
| 7 | 5, 6 | sylib 122 |
. . . . . . . 8
|
| 8 | elnnuz 9755 |
. . . . . . . . 9
| |
| 9 | cvgcmp2n.cl |
. . . . . . . . . 10
| |
| 10 | 9 | recnd 8171 |
. . . . . . . . 9
|
| 11 | 8, 10 | sylan2br 288 |
. . . . . . . 8
|
| 12 | 1, 7, 11 | fsum3ser 11903 |
. . . . . . 7
|
| 13 | nnuz 9754 |
. . . . . . . . 9
| |
| 14 | 2, 13 | eleqtrdi 2322 |
. . . . . . . 8
|
| 15 | 1, 14, 11 | fsum3ser 11903 |
. . . . . . 7
|
| 16 | 12, 15 | oveq12d 6018 |
. . . . . 6
|
| 17 | 2 | nnred 9119 |
. . . . . . . . . . 11
|
| 18 | 17 | ltp1d 9073 |
. . . . . . . . . 10
|
| 19 | fzdisj 10244 |
. . . . . . . . . 10
| |
| 20 | 18, 19 | syl 14 |
. . . . . . . . 9
|
| 21 | eluzle 9730 |
. . . . . . . . . . . 12
| |
| 22 | 3, 21 | syl 14 |
. . . . . . . . . . 11
|
| 23 | elfz1b 10282 |
. . . . . . . . . . 11
| |
| 24 | 2, 5, 22, 23 | syl3anbrc 1205 |
. . . . . . . . . 10
|
| 25 | fzsplit 10243 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | syl 14 |
. . . . . . . . 9
|
| 27 | 1zzd 9469 |
. . . . . . . . . 10
| |
| 28 | 5 | nnzd 9564 |
. . . . . . . . . 10
|
| 29 | 27, 28 | fzfigd 10648 |
. . . . . . . . 9
|
| 30 | elfznn 10246 |
. . . . . . . . . 10
| |
| 31 | 30, 10 | sylan2 286 |
. . . . . . . . 9
|
| 32 | 20, 26, 29, 31 | fsumsplit 11913 |
. . . . . . . 8
|
| 33 | 32 | eqcomd 2235 |
. . . . . . 7
|
| 34 | 29, 31 | fsumcl 11906 |
. . . . . . . 8
|
| 35 | 2 | nnzd 9564 |
. . . . . . . . . 10
|
| 36 | 27, 35 | fzfigd 10648 |
. . . . . . . . 9
|
| 37 | elfznn 10246 |
. . . . . . . . . 10
| |
| 38 | 37, 10 | sylan2 286 |
. . . . . . . . 9
|
| 39 | 36, 38 | fsumcl 11906 |
. . . . . . . 8
|
| 40 | 35 | peano2zd 9568 |
. . . . . . . . . 10
|
| 41 | 40, 28 | fzfigd 10648 |
. . . . . . . . 9
|
| 42 | 2 | peano2nnd 9121 |
. . . . . . . . . . 11
|
| 43 | elfzuz 10213 |
. . . . . . . . . . 11
| |
| 44 | eluznn 9791 |
. . . . . . . . . . 11
| |
| 45 | 42, 43, 44 | syl2an 289 |
. . . . . . . . . 10
|
| 46 | 45, 10 | syldan 282 |
. . . . . . . . 9
|
| 47 | 41, 46 | fsumcl 11906 |
. . . . . . . 8
|
| 48 | 34, 39, 47 | subaddd 8471 |
. . . . . . 7
|
| 49 | 33, 48 | mpbird 167 |
. . . . . 6
|
| 50 | 16, 49 | eqtr3d 2264 |
. . . . 5
|
| 51 | 45, 9 | syldan 282 |
. . . . . 6
|
| 52 | 41, 51 | fsumrecl 11907 |
. . . . 5
|
| 53 | 50, 52 | eqeltrd 2306 |
. . . 4
|
| 54 | 42 | nnzd 9564 |
. . . . . . 7
|
| 55 | 54, 28 | fzfigd 10648 |
. . . . . 6
|
| 56 | cvgcmp2n.ge0 |
. . . . . . 7
| |
| 57 | 45, 56 | syldan 282 |
. . . . . 6
|
| 58 | 55, 51, 57 | fsumge0 11965 |
. . . . 5
|
| 59 | 58, 50 | breqtrrd 4110 |
. . . 4
|
| 60 | 53, 59 | absidd 11673 |
. . 3
|
| 61 | 60, 50 | eqtrd 2262 |
. 2
|
| 62 | halfre 9320 |
. . . . . . 7
| |
| 63 | 62 | a1i 9 |
. . . . . 6
|
| 64 | 42 | nnnn0d 9418 |
. . . . . 6
|
| 65 | 63, 64 | reexpcld 10907 |
. . . . 5
|
| 66 | 5 | peano2nnd 9121 |
. . . . . . 7
|
| 67 | 66 | nnnn0d 9418 |
. . . . . 6
|
| 68 | 63, 67 | reexpcld 10907 |
. . . . 5
|
| 69 | 65, 68 | resubcld 8523 |
. . . 4
|
| 70 | 1mhlfehlf 9325 |
. . . . . 6
| |
| 71 | 2rp 9850 |
. . . . . . 7
| |
| 72 | rpreccl 9872 |
. . . . . . 7
| |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
|
| 74 | 70, 73 | eqeltri 2302 |
. . . . 5
|
| 75 | 74 | a1i 9 |
. . . 4
|
| 76 | 69, 75 | rerpdivcld 9920 |
. . 3
|
| 77 | 71 | a1i 9 |
. . . . 5
|
| 78 | 2 | nnrpd 9886 |
. . . . 5
|
| 79 | 77, 78 | rpdivcld 9906 |
. . . 4
|
| 80 | 79 | rpred 9888 |
. . 3
|
| 81 | 71 | a1i 9 |
. . . . . . . . 9
|
| 82 | 45 | nnzd 9564 |
. . . . . . . . 9
|
| 83 | 81, 82 | rpexpcld 10914 |
. . . . . . . 8
|
| 84 | 83 | rprecred 9900 |
. . . . . . 7
|
| 85 | cvgcmp2n.lt |
. . . . . . . 8
| |
| 86 | 45, 85 | syldan 282 |
. . . . . . 7
|
| 87 | 41, 51, 84, 86 | fsumle 11969 |
. . . . . 6
|
| 88 | 2cnd 9179 |
. . . . . . . . 9
| |
| 89 | 81 | rpap0d 9894 |
. . . . . . . . 9
|
| 90 | 88, 89, 82 | exprecapd 10898 |
. . . . . . . 8
|
| 91 | 90 | eqcomd 2235 |
. . . . . . 7
|
| 92 | 91 | sumeq2dv 11874 |
. . . . . 6
|
| 93 | 87, 92 | breqtrd 4108 |
. . . . 5
|
| 94 | fzval3 10405 |
. . . . . . 7
| |
| 95 | 28, 94 | syl 14 |
. . . . . 6
|
| 96 | 95 | sumeq1d 11872 |
. . . . 5
|
| 97 | 93, 96 | breqtrd 4108 |
. . . 4
|
| 98 | halfcn 9321 |
. . . . . 6
| |
| 99 | 98 | a1i 9 |
. . . . 5
|
| 100 | 1re 8141 |
. . . . . . 7
| |
| 101 | halflt1 9324 |
. . . . . . 7
| |
| 102 | 62, 100, 101 | ltapii 8778 |
. . . . . 6
|
| 103 | 102 | a1i 9 |
. . . . 5
|
| 104 | eluzp1p1 9744 |
. . . . . 6
| |
| 105 | 3, 104 | syl 14 |
. . . . 5
|
| 106 | 99, 103, 64, 105 | geosergap 12012 |
. . . 4
|
| 107 | 97, 106 | breqtrd 4108 |
. . 3
|
| 108 | 73 | a1i 9 |
. . . . . . . 8
|
| 109 | 28 | peano2zd 9568 |
. . . . . . . 8
|
| 110 | 108, 109 | rpexpcld 10914 |
. . . . . . 7
|
| 111 | 110 | rpred 9888 |
. . . . . 6
|
| 112 | 65, 111 | resubcld 8523 |
. . . . 5
|
| 113 | 2 | nnrecred 9153 |
. . . . 5
|
| 114 | 65, 110 | ltsubrpd 9921 |
. . . . . 6
|
| 115 | 2cnd 9179 |
. . . . . . . 8
| |
| 116 | 77 | rpap0d 9894 |
. . . . . . . 8
|
| 117 | 115, 116, 40 | exprecapd 10898 |
. . . . . . 7
|
| 118 | 42 | nnred 9119 |
. . . . . . . . 9
|
| 119 | 77, 40 | rpexpcld 10914 |
. . . . . . . . . 10
|
| 120 | 119 | rpred 9888 |
. . . . . . . . 9
|
| 121 | 2z 9470 |
. . . . . . . . . . . 12
| |
| 122 | uzid 9732 |
. . . . . . . . . . . 12
| |
| 123 | 121, 122 | ax-mp 5 |
. . . . . . . . . . 11
|
| 124 | 123 | a1i 9 |
. . . . . . . . . 10
|
| 125 | bernneq3 10879 |
. . . . . . . . . 10
| |
| 126 | 124, 64, 125 | syl2anc 411 |
. . . . . . . . 9
|
| 127 | 17, 118, 120, 18, 126 | lttrd 8268 |
. . . . . . . 8
|
| 128 | 78, 119 | ltrecd 9907 |
. . . . . . . 8
|
| 129 | 127, 128 | mpbid 147 |
. . . . . . 7
|
| 130 | 117, 129 | eqbrtrd 4104 |
. . . . . 6
|
| 131 | 112, 65, 113, 114, 130 | lttrd 8268 |
. . . . 5
|
| 132 | 112, 113, 77, 131 | ltmul1dd 9944 |
. . . 4
|
| 133 | 70 | oveq2i 6011 |
. . . . . 6
|
| 134 | 112 | recnd 8171 |
. . . . . . 7
|
| 135 | 1cnd 8158 |
. . . . . . 7
| |
| 136 | 1ap0 8733 |
. . . . . . . 8
| |
| 137 | 136 | a1i 9 |
. . . . . . 7
|
| 138 | 134, 135, 115, 137, 116 | divdivap2d 8966 |
. . . . . 6
|
| 139 | 133, 138 | eqtrid 2274 |
. . . . 5
|
| 140 | 134, 115 | mulcld 8163 |
. . . . . 6
|
| 141 | 140 | div1d 8923 |
. . . . 5
|
| 142 | 139, 141 | eqtrd 2262 |
. . . 4
|
| 143 | 17 | recnd 8171 |
. . . . 5
|
| 144 | 2 | nnap0d 9152 |
. . . . 5
|
| 145 | 115, 143, 144 | divrecap2d 8937 |
. . . 4
|
| 146 | 132, 142, 145 | 3brtr4d 4114 |
. . 3
|
| 147 | 52, 76, 80, 107, 146 | lelttrd 8267 |
. 2
|
| 148 | 61, 147 | eqbrtrd 4104 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-ico 10086 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 |
| This theorem is referenced by: cvgcmp2n 16360 |
| Copyright terms: Public domain | W3C validator |