ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt Unicode version

Theorem nninfdclemlt 12278
Description: Lemma for nninfdc 12280. The function from nninfdclemf 12276 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
nninfdclemlt.u  |-  ( ph  ->  U  e.  NN )
nninfdclemlt.v  |-  ( ph  ->  V  e.  NN )
nninfdclemlt.lt  |-  ( ph  ->  U  <  V )
Assertion
Ref Expression
nninfdclemlt  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    U, i    U, m, n    x, U    y, U, z    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)    V( x, y, z, i, m, n)

Proof of Theorem nninfdclemlt
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6  |-  ( ph  ->  U  e.  NN )
21peano2nnd 8854 . . . . 5  |-  ( ph  ->  ( U  +  1 )  e.  NN )
32nnzd 9291 . . . 4  |-  ( ph  ->  ( U  +  1 )  e.  ZZ )
4 nninfdclemlt.v . . . . 5  |-  ( ph  ->  V  e.  NN )
54nnzd 9291 . . . 4  |-  ( ph  ->  V  e.  ZZ )
6 nninfdclemlt.lt . . . . 5  |-  ( ph  ->  U  <  V )
7 nnltp1le 9233 . . . . . 6  |-  ( ( U  e.  NN  /\  V  e.  NN )  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
81, 4, 7syl2anc 409 . . . . 5  |-  ( ph  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
96, 8mpbid 146 . . . 4  |-  ( ph  ->  ( U  +  1 )  <_  V )
10 eluz2 9451 . . . 4  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  <->  ( ( U  +  1 )  e.  ZZ  /\  V  e.  ZZ  /\  ( U  +  1 )  <_  V ) )
113, 5, 9, 10syl3anbrc 1166 . . 3  |-  ( ph  ->  V  e.  ( ZZ>= `  ( U  +  1
) ) )
12 eluzfz2 9941 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  V  e.  ( ( U  + 
1 ) ... V
) )
1311, 12syl 14 . 2  |-  ( ph  ->  V  e.  ( ( U  +  1 ) ... V ) )
14 fveq2 5471 . . . . 5  |-  ( w  =  ( U  + 
1 )  ->  ( F `  w )  =  ( F `  ( U  +  1
) ) )
1514breq2d 3979 . . . 4  |-  ( w  =  ( U  + 
1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( U  +  1 ) ) ) )
1615imbi2d 229 . . 3  |-  ( w  =  ( U  + 
1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) ) )
17 fveq2 5471 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1817breq2d 3979 . . . 4  |-  ( w  =  k  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  k )
) )
1918imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  k ) ) ) )
20 fveq2 5471 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
2120breq2d 3979 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
2221imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
23 fveq2 5471 . . . . 5  |-  ( w  =  V  ->  ( F `  w )  =  ( F `  V ) )
2423breq2d 3979 . . . 4  |-  ( w  =  V  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  V )
) )
2524imbi2d 229 . . 3  |-  ( w  =  V  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  V ) ) ) )
26 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
27 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
28 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
29 nninfdclemf.j . . . . 5  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
30 nninfdclemf.f . . . . 5  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
3126, 27, 28, 29, 30, 1nninfdclemp1 12277 . . . 4  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
3231a1i 9 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) )
3326ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A  C_  NN )
3426, 27, 28, 29, 30nninfdclemf 12276 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> A )
3534ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  F : NN --> A )
361ad2antrr 480 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  U  e.  NN )
3735, 36ffvelrnd 5606 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  A )
3833, 37sseldd 3129 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  NN )
3938nnred 8852 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  RR )
40 elfzoelz 10056 . . . . . . . . . . . 12  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  k  e.  ZZ )
4140ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  ZZ )
42 1red 7896 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  e.  RR )
432nnred 8852 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  +  1 )  e.  RR )
4443ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  e.  RR )
4541zred 9292 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  RR )
462nnge1d 8882 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  ( U  +  1 ) )
4746ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  ( U  +  1 ) )
48 elfzole1 10064 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( U  +  1 )  <_ 
k )
4948ad2antlr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  <_  k )
5042, 44, 45, 47, 49letrd 8004 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  k )
51 elnnz1 9196 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
5241, 50, 51sylanbrc 414 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  NN )
5335, 52ffvelrnd 5606 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  A )
5433, 53sseldd 3129 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  NN )
5554nnred 8852 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  RR )
5652peano2nnd 8854 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  (
k  +  1 )  e.  NN )
5735, 56ffvelrnd 5606 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  A )
5833, 57sseldd 3129 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  NN )
5958nnred 8852 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
60 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  k
) )
6127ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. x  e.  NN DECID  x  e.  A )
6228ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
6329ad2antrr 480 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( J  e.  A  /\  1  <  J ) )
6433, 61, 62, 63, 30, 52nninfdclemp1 12277 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  <  ( F `  (
k  +  1 ) ) )
6539, 55, 59, 60, 64lttrd 8006 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  (
k  +  1 ) ) )
6665ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  ->  ( ( F `  U )  <  ( F `  k
)  ->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
6766expcom 115 . . . 4  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ph  ->  ( ( F `  U )  <  ( F `  k )  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6867a2d 26 . . 3  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ( ph  ->  ( F `  U )  <  ( F `  k )
)  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6916, 19, 22, 25, 32, 68fzind2 10148 . 2  |-  ( V  e.  ( ( U  +  1 ) ... V )  ->  ( ph  ->  ( F `  U )  <  ( F `  V )
) )
7013, 69mpcom 36 1  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 820    = wceq 1335    e. wcel 2128   A.wral 2435   E.wrex 2436    i^i cin 3101    C_ wss 3102   class class class wbr 3967    |-> cmpt 4028   -->wf 5169   ` cfv 5173  (class class class)co 5827    e. cmpo 5829  infcinf 6930   RRcr 7734   1c1 7736    + caddc 7738    < clt 7915    <_ cle 7916   NNcn 8839   ZZcz 9173   ZZ>=cuz 9445   ...cfz 9919  ..^cfzo 10051    seqcseq 10354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-addcom 7835  ax-addass 7837  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-0id 7843  ax-rnegex 7844  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-inn 8840  df-n0 9097  df-z 9174  df-uz 9446  df-fz 9920  df-fzo 10052  df-seqfrec 10355
This theorem is referenced by:  nninfdclemf1  12279
  Copyright terms: Public domain W3C validator