| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemlt | Unicode version | ||
| Description: Lemma for nninfdc 12824. The function from nninfdclemf 12820 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a |
|
| nninfdclemf.dc |
|
| nninfdclemf.nb |
|
| nninfdclemf.j |
|
| nninfdclemf.f |
|
| nninfdclemlt.u |
|
| nninfdclemlt.v |
|
| nninfdclemlt.lt |
|
| Ref | Expression |
|---|---|
| nninfdclemlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfdclemlt.u |
. . . . . 6
| |
| 2 | 1 | peano2nnd 9051 |
. . . . 5
|
| 3 | 2 | nnzd 9494 |
. . . 4
|
| 4 | nninfdclemlt.v |
. . . . 5
| |
| 5 | 4 | nnzd 9494 |
. . . 4
|
| 6 | nninfdclemlt.lt |
. . . . 5
| |
| 7 | nnltp1le 9433 |
. . . . . 6
| |
| 8 | 1, 4, 7 | syl2anc 411 |
. . . . 5
|
| 9 | 6, 8 | mpbid 147 |
. . . 4
|
| 10 | eluz2 9654 |
. . . 4
| |
| 11 | 3, 5, 9, 10 | syl3anbrc 1184 |
. . 3
|
| 12 | eluzfz2 10154 |
. . 3
| |
| 13 | 11, 12 | syl 14 |
. 2
|
| 14 | fveq2 5576 |
. . . . 5
| |
| 15 | 14 | breq2d 4056 |
. . . 4
|
| 16 | 15 | imbi2d 230 |
. . 3
|
| 17 | fveq2 5576 |
. . . . 5
| |
| 18 | 17 | breq2d 4056 |
. . . 4
|
| 19 | 18 | imbi2d 230 |
. . 3
|
| 20 | fveq2 5576 |
. . . . 5
| |
| 21 | 20 | breq2d 4056 |
. . . 4
|
| 22 | 21 | imbi2d 230 |
. . 3
|
| 23 | fveq2 5576 |
. . . . 5
| |
| 24 | 23 | breq2d 4056 |
. . . 4
|
| 25 | 24 | imbi2d 230 |
. . 3
|
| 26 | nninfdclemf.a |
. . . . 5
| |
| 27 | nninfdclemf.dc |
. . . . 5
| |
| 28 | nninfdclemf.nb |
. . . . 5
| |
| 29 | nninfdclemf.j |
. . . . 5
| |
| 30 | nninfdclemf.f |
. . . . 5
| |
| 31 | 26, 27, 28, 29, 30, 1 | nninfdclemp1 12821 |
. . . 4
|
| 32 | 31 | a1i 9 |
. . 3
|
| 33 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 34 | 26, 27, 28, 29, 30 | nninfdclemf 12820 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
|
| 36 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 37 | 35, 36 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 38 | 33, 37 | sseldd 3194 |
. . . . . . . 8
|
| 39 | 38 | nnred 9049 |
. . . . . . 7
|
| 40 | elfzoelz 10269 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 42 | 1red 8087 |
. . . . . . . . . . . 12
| |
| 43 | 2 | nnred 9049 |
. . . . . . . . . . . . 13
|
| 44 | 43 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 45 | 41 | zred 9495 |
. . . . . . . . . . . 12
|
| 46 | 2 | nnge1d 9079 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 48 | elfzole1 10278 |
. . . . . . . . . . . . 13
| |
| 49 | 48 | ad2antlr 489 |
. . . . . . . . . . . 12
|
| 50 | 42, 44, 45, 47, 49 | letrd 8196 |
. . . . . . . . . . 11
|
| 51 | elnnz1 9395 |
. . . . . . . . . . 11
| |
| 52 | 41, 50, 51 | sylanbrc 417 |
. . . . . . . . . 10
|
| 53 | 35, 52 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 54 | 33, 53 | sseldd 3194 |
. . . . . . . 8
|
| 55 | 54 | nnred 9049 |
. . . . . . 7
|
| 56 | 52 | peano2nnd 9051 |
. . . . . . . . . 10
|
| 57 | 35, 56 | ffvelcdmd 5716 |
. . . . . . . . 9
|
| 58 | 33, 57 | sseldd 3194 |
. . . . . . . 8
|
| 59 | 58 | nnred 9049 |
. . . . . . 7
|
| 60 | simpr 110 |
. . . . . . 7
| |
| 61 | 27 | ad2antrr 488 |
. . . . . . . 8
|
| 62 | 28 | ad2antrr 488 |
. . . . . . . 8
|
| 63 | 29 | ad2antrr 488 |
. . . . . . . 8
|
| 64 | 33, 61, 62, 63, 30, 52 | nninfdclemp1 12821 |
. . . . . . 7
|
| 65 | 39, 55, 59, 60, 64 | lttrd 8198 |
. . . . . 6
|
| 66 | 65 | ex 115 |
. . . . 5
|
| 67 | 66 | expcom 116 |
. . . 4
|
| 68 | 67 | a2d 26 |
. . 3
|
| 69 | 16, 19, 22, 25, 32, 68 | fzind2 10368 |
. 2
|
| 70 | 13, 69 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-po 4343 df-iso 4344 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-isom 5280 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-sup 7086 df-inf 7087 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-fzo 10265 df-seqfrec 10593 |
| This theorem is referenced by: nninfdclemf1 12823 |
| Copyright terms: Public domain | W3C validator |