Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nninfdclemlt | Unicode version |
Description: Lemma for nninfdc 12382. The function from nninfdclemf 12378 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.) |
Ref | Expression |
---|---|
nninfdclemf.a | |
nninfdclemf.dc | DECID |
nninfdclemf.nb | |
nninfdclemf.j | |
nninfdclemf.f | inf |
nninfdclemlt.u | |
nninfdclemlt.v | |
nninfdclemlt.lt |
Ref | Expression |
---|---|
nninfdclemlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nninfdclemlt.u | . . . . . 6 | |
2 | 1 | peano2nnd 8868 | . . . . 5 |
3 | 2 | nnzd 9308 | . . . 4 |
4 | nninfdclemlt.v | . . . . 5 | |
5 | 4 | nnzd 9308 | . . . 4 |
6 | nninfdclemlt.lt | . . . . 5 | |
7 | nnltp1le 9247 | . . . . . 6 | |
8 | 1, 4, 7 | syl2anc 409 | . . . . 5 |
9 | 6, 8 | mpbid 146 | . . . 4 |
10 | eluz2 9468 | . . . 4 | |
11 | 3, 5, 9, 10 | syl3anbrc 1171 | . . 3 |
12 | eluzfz2 9963 | . . 3 | |
13 | 11, 12 | syl 14 | . 2 |
14 | fveq2 5485 | . . . . 5 | |
15 | 14 | breq2d 3993 | . . . 4 |
16 | 15 | imbi2d 229 | . . 3 |
17 | fveq2 5485 | . . . . 5 | |
18 | 17 | breq2d 3993 | . . . 4 |
19 | 18 | imbi2d 229 | . . 3 |
20 | fveq2 5485 | . . . . 5 | |
21 | 20 | breq2d 3993 | . . . 4 |
22 | 21 | imbi2d 229 | . . 3 |
23 | fveq2 5485 | . . . . 5 | |
24 | 23 | breq2d 3993 | . . . 4 |
25 | 24 | imbi2d 229 | . . 3 |
26 | nninfdclemf.a | . . . . 5 | |
27 | nninfdclemf.dc | . . . . 5 DECID | |
28 | nninfdclemf.nb | . . . . 5 | |
29 | nninfdclemf.j | . . . . 5 | |
30 | nninfdclemf.f | . . . . 5 inf | |
31 | 26, 27, 28, 29, 30, 1 | nninfdclemp1 12379 | . . . 4 |
32 | 31 | a1i 9 | . . 3 |
33 | 26 | ad2antrr 480 | . . . . . . . . 9 ..^ |
34 | 26, 27, 28, 29, 30 | nninfdclemf 12378 | . . . . . . . . . . 11 |
35 | 34 | ad2antrr 480 | . . . . . . . . . 10 ..^ |
36 | 1 | ad2antrr 480 | . . . . . . . . . 10 ..^ |
37 | 35, 36 | ffvelrnd 5620 | . . . . . . . . 9 ..^ |
38 | 33, 37 | sseldd 3142 | . . . . . . . 8 ..^ |
39 | 38 | nnred 8866 | . . . . . . 7 ..^ |
40 | elfzoelz 10078 | . . . . . . . . . . . 12 ..^ | |
41 | 40 | ad2antlr 481 | . . . . . . . . . . 11 ..^ |
42 | 1red 7910 | . . . . . . . . . . . 12 ..^ | |
43 | 2 | nnred 8866 | . . . . . . . . . . . . 13 |
44 | 43 | ad2antrr 480 | . . . . . . . . . . . 12 ..^ |
45 | 41 | zred 9309 | . . . . . . . . . . . 12 ..^ |
46 | 2 | nnge1d 8896 | . . . . . . . . . . . . 13 |
47 | 46 | ad2antrr 480 | . . . . . . . . . . . 12 ..^ |
48 | elfzole1 10086 | . . . . . . . . . . . . 13 ..^ | |
49 | 48 | ad2antlr 481 | . . . . . . . . . . . 12 ..^ |
50 | 42, 44, 45, 47, 49 | letrd 8018 | . . . . . . . . . . 11 ..^ |
51 | elnnz1 9210 | . . . . . . . . . . 11 | |
52 | 41, 50, 51 | sylanbrc 414 | . . . . . . . . . 10 ..^ |
53 | 35, 52 | ffvelrnd 5620 | . . . . . . . . 9 ..^ |
54 | 33, 53 | sseldd 3142 | . . . . . . . 8 ..^ |
55 | 54 | nnred 8866 | . . . . . . 7 ..^ |
56 | 52 | peano2nnd 8868 | . . . . . . . . . 10 ..^ |
57 | 35, 56 | ffvelrnd 5620 | . . . . . . . . 9 ..^ |
58 | 33, 57 | sseldd 3142 | . . . . . . . 8 ..^ |
59 | 58 | nnred 8866 | . . . . . . 7 ..^ |
60 | simpr 109 | . . . . . . 7 ..^ | |
61 | 27 | ad2antrr 480 | . . . . . . . 8 ..^ DECID |
62 | 28 | ad2antrr 480 | . . . . . . . 8 ..^ |
63 | 29 | ad2antrr 480 | . . . . . . . 8 ..^ |
64 | 33, 61, 62, 63, 30, 52 | nninfdclemp1 12379 | . . . . . . 7 ..^ |
65 | 39, 55, 59, 60, 64 | lttrd 8020 | . . . . . 6 ..^ |
66 | 65 | ex 114 | . . . . 5 ..^ |
67 | 66 | expcom 115 | . . . 4 ..^ |
68 | 67 | a2d 26 | . . 3 ..^ |
69 | 16, 19, 22, 25, 32, 68 | fzind2 10170 | . 2 |
70 | 13, 69 | mpcom 36 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 824 wceq 1343 wcel 2136 wral 2443 wrex 2444 cin 3114 wss 3115 class class class wbr 3981 cmpt 4042 wf 5183 cfv 5187 (class class class)co 5841 cmpo 5843 infcinf 6944 cr 7748 c1 7750 caddc 7752 clt 7929 cle 7930 cn 8853 cz 9187 cuz 9462 cfz 9940 ..^cfzo 10073 cseq 10376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 ax-cnex 7840 ax-resscn 7841 ax-1cn 7842 ax-1re 7843 ax-icn 7844 ax-addcl 7845 ax-addrcl 7846 ax-mulcl 7847 ax-addcom 7849 ax-addass 7851 ax-distr 7853 ax-i2m1 7854 ax-0lt1 7855 ax-0id 7857 ax-rnegex 7858 ax-cnre 7860 ax-pre-ltirr 7861 ax-pre-ltwlin 7862 ax-pre-lttrn 7863 ax-pre-apti 7864 ax-pre-ltadd 7865 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-nel 2431 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-ilim 4346 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-isom 5196 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-frec 6355 df-sup 6945 df-inf 6946 df-pnf 7931 df-mnf 7932 df-xr 7933 df-ltxr 7934 df-le 7935 df-sub 8067 df-neg 8068 df-inn 8854 df-n0 9111 df-z 9188 df-uz 9463 df-fz 9941 df-fzo 10074 df-seqfrec 10377 |
This theorem is referenced by: nninfdclemf1 12381 |
Copyright terms: Public domain | W3C validator |