ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt Unicode version

Theorem nninfdclemlt 12822
Description: Lemma for nninfdc 12824. The function from nninfdclemf 12820 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
nninfdclemlt.u  |-  ( ph  ->  U  e.  NN )
nninfdclemlt.v  |-  ( ph  ->  V  e.  NN )
nninfdclemlt.lt  |-  ( ph  ->  U  <  V )
Assertion
Ref Expression
nninfdclemlt  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    U, i    U, m, n    x, U    y, U, z    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)    V( x, y, z, i, m, n)

Proof of Theorem nninfdclemlt
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6  |-  ( ph  ->  U  e.  NN )
21peano2nnd 9051 . . . . 5  |-  ( ph  ->  ( U  +  1 )  e.  NN )
32nnzd 9494 . . . 4  |-  ( ph  ->  ( U  +  1 )  e.  ZZ )
4 nninfdclemlt.v . . . . 5  |-  ( ph  ->  V  e.  NN )
54nnzd 9494 . . . 4  |-  ( ph  ->  V  e.  ZZ )
6 nninfdclemlt.lt . . . . 5  |-  ( ph  ->  U  <  V )
7 nnltp1le 9433 . . . . . 6  |-  ( ( U  e.  NN  /\  V  e.  NN )  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
81, 4, 7syl2anc 411 . . . . 5  |-  ( ph  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
96, 8mpbid 147 . . . 4  |-  ( ph  ->  ( U  +  1 )  <_  V )
10 eluz2 9654 . . . 4  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  <->  ( ( U  +  1 )  e.  ZZ  /\  V  e.  ZZ  /\  ( U  +  1 )  <_  V ) )
113, 5, 9, 10syl3anbrc 1184 . . 3  |-  ( ph  ->  V  e.  ( ZZ>= `  ( U  +  1
) ) )
12 eluzfz2 10154 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  V  e.  ( ( U  + 
1 ) ... V
) )
1311, 12syl 14 . 2  |-  ( ph  ->  V  e.  ( ( U  +  1 ) ... V ) )
14 fveq2 5576 . . . . 5  |-  ( w  =  ( U  + 
1 )  ->  ( F `  w )  =  ( F `  ( U  +  1
) ) )
1514breq2d 4056 . . . 4  |-  ( w  =  ( U  + 
1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( U  +  1 ) ) ) )
1615imbi2d 230 . . 3  |-  ( w  =  ( U  + 
1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) ) )
17 fveq2 5576 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1817breq2d 4056 . . . 4  |-  ( w  =  k  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  k )
) )
1918imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  k ) ) ) )
20 fveq2 5576 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
2120breq2d 4056 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
2221imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
23 fveq2 5576 . . . . 5  |-  ( w  =  V  ->  ( F `  w )  =  ( F `  V ) )
2423breq2d 4056 . . . 4  |-  ( w  =  V  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  V )
) )
2524imbi2d 230 . . 3  |-  ( w  =  V  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  V ) ) ) )
26 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
27 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
28 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
29 nninfdclemf.j . . . . 5  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
30 nninfdclemf.f . . . . 5  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
3126, 27, 28, 29, 30, 1nninfdclemp1 12821 . . . 4  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
3231a1i 9 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) )
3326ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A  C_  NN )
3426, 27, 28, 29, 30nninfdclemf 12820 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> A )
3534ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  F : NN --> A )
361ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  U  e.  NN )
3735, 36ffvelcdmd 5716 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  A )
3833, 37sseldd 3194 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  NN )
3938nnred 9049 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  RR )
40 elfzoelz 10269 . . . . . . . . . . . 12  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  k  e.  ZZ )
4140ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  ZZ )
42 1red 8087 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  e.  RR )
432nnred 9049 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  +  1 )  e.  RR )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  e.  RR )
4541zred 9495 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  RR )
462nnge1d 9079 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  ( U  +  1 ) )
4746ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  ( U  +  1 ) )
48 elfzole1 10278 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( U  +  1 )  <_ 
k )
4948ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  <_  k )
5042, 44, 45, 47, 49letrd 8196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  k )
51 elnnz1 9395 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
5241, 50, 51sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  NN )
5335, 52ffvelcdmd 5716 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  A )
5433, 53sseldd 3194 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  NN )
5554nnred 9049 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  RR )
5652peano2nnd 9051 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  (
k  +  1 )  e.  NN )
5735, 56ffvelcdmd 5716 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  A )
5833, 57sseldd 3194 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  NN )
5958nnred 9049 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
60 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  k
) )
6127ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. x  e.  NN DECID  x  e.  A )
6228ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
6329ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( J  e.  A  /\  1  <  J ) )
6433, 61, 62, 63, 30, 52nninfdclemp1 12821 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  <  ( F `  (
k  +  1 ) ) )
6539, 55, 59, 60, 64lttrd 8198 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  (
k  +  1 ) ) )
6665ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  ->  ( ( F `  U )  <  ( F `  k
)  ->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
6766expcom 116 . . . 4  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ph  ->  ( ( F `  U )  <  ( F `  k )  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6867a2d 26 . . 3  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ( ph  ->  ( F `  U )  <  ( F `  k )
)  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6916, 19, 22, 25, 32, 68fzind2 10368 . 2  |-  ( V  e.  ( ( U  +  1 ) ... V )  ->  ( ph  ->  ( F `  U )  <  ( F `  V )
) )
7013, 69mpcom 36 1  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485    i^i cin 3165    C_ wss 3166   class class class wbr 4044    |-> cmpt 4105   -->wf 5267   ` cfv 5271  (class class class)co 5944    e. cmpo 5946  infcinf 7085   RRcr 7924   1c1 7926    + caddc 7928    < clt 8107    <_ cle 8108   NNcn 9036   ZZcz 9372   ZZ>=cuz 9648   ...cfz 10130  ..^cfzo 10264    seqcseq 10592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-fzo 10265  df-seqfrec 10593
This theorem is referenced by:  nninfdclemf1  12823
  Copyright terms: Public domain W3C validator