ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt Unicode version

Theorem nninfdclemlt 12435
Description: Lemma for nninfdc 12437. The function from nninfdclemf 12433 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
nninfdclemlt.u  |-  ( ph  ->  U  e.  NN )
nninfdclemlt.v  |-  ( ph  ->  V  e.  NN )
nninfdclemlt.lt  |-  ( ph  ->  U  <  V )
Assertion
Ref Expression
nninfdclemlt  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    U, i    U, m, n    x, U    y, U, z    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)    V( x, y, z, i, m, n)

Proof of Theorem nninfdclemlt
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6  |-  ( ph  ->  U  e.  NN )
21peano2nnd 8923 . . . . 5  |-  ( ph  ->  ( U  +  1 )  e.  NN )
32nnzd 9363 . . . 4  |-  ( ph  ->  ( U  +  1 )  e.  ZZ )
4 nninfdclemlt.v . . . . 5  |-  ( ph  ->  V  e.  NN )
54nnzd 9363 . . . 4  |-  ( ph  ->  V  e.  ZZ )
6 nninfdclemlt.lt . . . . 5  |-  ( ph  ->  U  <  V )
7 nnltp1le 9302 . . . . . 6  |-  ( ( U  e.  NN  /\  V  e.  NN )  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
81, 4, 7syl2anc 411 . . . . 5  |-  ( ph  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
96, 8mpbid 147 . . . 4  |-  ( ph  ->  ( U  +  1 )  <_  V )
10 eluz2 9523 . . . 4  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  <->  ( ( U  +  1 )  e.  ZZ  /\  V  e.  ZZ  /\  ( U  +  1 )  <_  V ) )
113, 5, 9, 10syl3anbrc 1181 . . 3  |-  ( ph  ->  V  e.  ( ZZ>= `  ( U  +  1
) ) )
12 eluzfz2 10018 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  V  e.  ( ( U  + 
1 ) ... V
) )
1311, 12syl 14 . 2  |-  ( ph  ->  V  e.  ( ( U  +  1 ) ... V ) )
14 fveq2 5511 . . . . 5  |-  ( w  =  ( U  + 
1 )  ->  ( F `  w )  =  ( F `  ( U  +  1
) ) )
1514breq2d 4012 . . . 4  |-  ( w  =  ( U  + 
1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( U  +  1 ) ) ) )
1615imbi2d 230 . . 3  |-  ( w  =  ( U  + 
1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) ) )
17 fveq2 5511 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1817breq2d 4012 . . . 4  |-  ( w  =  k  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  k )
) )
1918imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  k ) ) ) )
20 fveq2 5511 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
2120breq2d 4012 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
2221imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
23 fveq2 5511 . . . . 5  |-  ( w  =  V  ->  ( F `  w )  =  ( F `  V ) )
2423breq2d 4012 . . . 4  |-  ( w  =  V  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  V )
) )
2524imbi2d 230 . . 3  |-  ( w  =  V  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  V ) ) ) )
26 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
27 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
28 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
29 nninfdclemf.j . . . . 5  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
30 nninfdclemf.f . . . . 5  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
3126, 27, 28, 29, 30, 1nninfdclemp1 12434 . . . 4  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
3231a1i 9 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) )
3326ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A  C_  NN )
3426, 27, 28, 29, 30nninfdclemf 12433 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> A )
3534ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  F : NN --> A )
361ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  U  e.  NN )
3735, 36ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  A )
3833, 37sseldd 3156 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  NN )
3938nnred 8921 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  RR )
40 elfzoelz 10133 . . . . . . . . . . . 12  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  k  e.  ZZ )
4140ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  ZZ )
42 1red 7963 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  e.  RR )
432nnred 8921 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  +  1 )  e.  RR )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  e.  RR )
4541zred 9364 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  RR )
462nnge1d 8951 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  ( U  +  1 ) )
4746ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  ( U  +  1 ) )
48 elfzole1 10141 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( U  +  1 )  <_ 
k )
4948ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  <_  k )
5042, 44, 45, 47, 49letrd 8071 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  k )
51 elnnz1 9265 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
5241, 50, 51sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  NN )
5335, 52ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  A )
5433, 53sseldd 3156 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  NN )
5554nnred 8921 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  RR )
5652peano2nnd 8923 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  (
k  +  1 )  e.  NN )
5735, 56ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  A )
5833, 57sseldd 3156 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  NN )
5958nnred 8921 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
60 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  k
) )
6127ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. x  e.  NN DECID  x  e.  A )
6228ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
6329ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( J  e.  A  /\  1  <  J ) )
6433, 61, 62, 63, 30, 52nninfdclemp1 12434 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  <  ( F `  (
k  +  1 ) ) )
6539, 55, 59, 60, 64lttrd 8073 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  (
k  +  1 ) ) )
6665ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  ->  ( ( F `  U )  <  ( F `  k
)  ->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
6766expcom 116 . . . 4  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ph  ->  ( ( F `  U )  <  ( F `  k )  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6867a2d 26 . . 3  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ( ph  ->  ( F `  U )  <  ( F `  k )
)  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6916, 19, 22, 25, 32, 68fzind2 10225 . 2  |-  ( V  e.  ( ( U  +  1 ) ... V )  ->  ( ph  ->  ( F `  U )  <  ( F `  V )
) )
7013, 69mpcom 36 1  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    i^i cin 3128    C_ wss 3129   class class class wbr 4000    |-> cmpt 4061   -->wf 5208   ` cfv 5212  (class class class)co 5869    e. cmpo 5871  infcinf 6976   RRcr 7801   1c1 7803    + caddc 7805    < clt 7982    <_ cle 7983   NNcn 8908   ZZcz 9242   ZZ>=cuz 9517   ...cfz 9995  ..^cfzo 10128    seqcseq 10431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-fzo 10129  df-seqfrec 10432
This theorem is referenced by:  nninfdclemf1  12436
  Copyright terms: Public domain W3C validator