ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt Unicode version

Theorem nninfdclemlt 13022
Description: Lemma for nninfdc 13024. The function from nninfdclemf 13020 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
nninfdclemlt.u  |-  ( ph  ->  U  e.  NN )
nninfdclemlt.v  |-  ( ph  ->  V  e.  NN )
nninfdclemlt.lt  |-  ( ph  ->  U  <  V )
Assertion
Ref Expression
nninfdclemlt  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    U, i    U, m, n    x, U    y, U, z    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)    V( x, y, z, i, m, n)

Proof of Theorem nninfdclemlt
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6  |-  ( ph  ->  U  e.  NN )
21peano2nnd 9125 . . . . 5  |-  ( ph  ->  ( U  +  1 )  e.  NN )
32nnzd 9568 . . . 4  |-  ( ph  ->  ( U  +  1 )  e.  ZZ )
4 nninfdclemlt.v . . . . 5  |-  ( ph  ->  V  e.  NN )
54nnzd 9568 . . . 4  |-  ( ph  ->  V  e.  ZZ )
6 nninfdclemlt.lt . . . . 5  |-  ( ph  ->  U  <  V )
7 nnltp1le 9507 . . . . . 6  |-  ( ( U  e.  NN  /\  V  e.  NN )  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
81, 4, 7syl2anc 411 . . . . 5  |-  ( ph  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
96, 8mpbid 147 . . . 4  |-  ( ph  ->  ( U  +  1 )  <_  V )
10 eluz2 9728 . . . 4  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  <->  ( ( U  +  1 )  e.  ZZ  /\  V  e.  ZZ  /\  ( U  +  1 )  <_  V ) )
113, 5, 9, 10syl3anbrc 1205 . . 3  |-  ( ph  ->  V  e.  ( ZZ>= `  ( U  +  1
) ) )
12 eluzfz2 10228 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  V  e.  ( ( U  + 
1 ) ... V
) )
1311, 12syl 14 . 2  |-  ( ph  ->  V  e.  ( ( U  +  1 ) ... V ) )
14 fveq2 5627 . . . . 5  |-  ( w  =  ( U  + 
1 )  ->  ( F `  w )  =  ( F `  ( U  +  1
) ) )
1514breq2d 4095 . . . 4  |-  ( w  =  ( U  + 
1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( U  +  1 ) ) ) )
1615imbi2d 230 . . 3  |-  ( w  =  ( U  + 
1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) ) )
17 fveq2 5627 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1817breq2d 4095 . . . 4  |-  ( w  =  k  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  k )
) )
1918imbi2d 230 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  k ) ) ) )
20 fveq2 5627 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
2120breq2d 4095 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
2221imbi2d 230 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
23 fveq2 5627 . . . . 5  |-  ( w  =  V  ->  ( F `  w )  =  ( F `  V ) )
2423breq2d 4095 . . . 4  |-  ( w  =  V  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  V )
) )
2524imbi2d 230 . . 3  |-  ( w  =  V  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  V ) ) ) )
26 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
27 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
28 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
29 nninfdclemf.j . . . . 5  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
30 nninfdclemf.f . . . . 5  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
3126, 27, 28, 29, 30, 1nninfdclemp1 13021 . . . 4  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
3231a1i 9 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) )
3326ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A  C_  NN )
3426, 27, 28, 29, 30nninfdclemf 13020 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> A )
3534ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  F : NN --> A )
361ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  U  e.  NN )
3735, 36ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  A )
3833, 37sseldd 3225 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  NN )
3938nnred 9123 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  RR )
40 elfzoelz 10343 . . . . . . . . . . . 12  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  k  e.  ZZ )
4140ad2antlr 489 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  ZZ )
42 1red 8161 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  e.  RR )
432nnred 9123 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  +  1 )  e.  RR )
4443ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  e.  RR )
4541zred 9569 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  RR )
462nnge1d 9153 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  ( U  +  1 ) )
4746ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  ( U  +  1 ) )
48 elfzole1 10352 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( U  +  1 )  <_ 
k )
4948ad2antlr 489 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  <_  k )
5042, 44, 45, 47, 49letrd 8270 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  k )
51 elnnz1 9469 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
5241, 50, 51sylanbrc 417 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  NN )
5335, 52ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  A )
5433, 53sseldd 3225 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  NN )
5554nnred 9123 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  RR )
5652peano2nnd 9125 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  (
k  +  1 )  e.  NN )
5735, 56ffvelcdmd 5771 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  A )
5833, 57sseldd 3225 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  NN )
5958nnred 9123 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
60 simpr 110 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  k
) )
6127ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. x  e.  NN DECID  x  e.  A )
6228ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
6329ad2antrr 488 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( J  e.  A  /\  1  <  J ) )
6433, 61, 62, 63, 30, 52nninfdclemp1 13021 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  <  ( F `  (
k  +  1 ) ) )
6539, 55, 59, 60, 64lttrd 8272 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  (
k  +  1 ) ) )
6665ex 115 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  ->  ( ( F `  U )  <  ( F `  k
)  ->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
6766expcom 116 . . . 4  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ph  ->  ( ( F `  U )  <  ( F `  k )  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6867a2d 26 . . 3  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ( ph  ->  ( F `  U )  <  ( F `  k )
)  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6916, 19, 22, 25, 32, 68fzind2 10445 . 2  |-  ( V  e.  ( ( U  +  1 ) ... V )  ->  ( ph  ->  ( F `  U )  <  ( F `  V )
) )
7013, 69mpcom 36 1  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509    i^i cin 3196    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   -->wf 5314   ` cfv 5318  (class class class)co 6001    e. cmpo 6003  infcinf 7150   RRcr 7998   1c1 8000    + caddc 8002    < clt 8181    <_ cle 8182   NNcn 9110   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204  ..^cfzo 10338    seqcseq 10669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-fzo 10339  df-seqfrec 10670
This theorem is referenced by:  nninfdclemf1  13023
  Copyright terms: Public domain W3C validator