| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nninfdclemlt | Unicode version | ||
| Description: Lemma for nninfdc 12670. The function from nninfdclemf 12666 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.) | 
| Ref | Expression | 
|---|---|
| nninfdclemf.a | 
 | 
| nninfdclemf.dc | 
 | 
| nninfdclemf.nb | 
 | 
| nninfdclemf.j | 
 | 
| nninfdclemf.f | 
 | 
| nninfdclemlt.u | 
 | 
| nninfdclemlt.v | 
 | 
| nninfdclemlt.lt | 
 | 
| Ref | Expression | 
|---|---|
| nninfdclemlt | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nninfdclemlt.u | 
. . . . . 6
 | |
| 2 | 1 | peano2nnd 9005 | 
. . . . 5
 | 
| 3 | 2 | nnzd 9447 | 
. . . 4
 | 
| 4 | nninfdclemlt.v | 
. . . . 5
 | |
| 5 | 4 | nnzd 9447 | 
. . . 4
 | 
| 6 | nninfdclemlt.lt | 
. . . . 5
 | |
| 7 | nnltp1le 9386 | 
. . . . . 6
 | |
| 8 | 1, 4, 7 | syl2anc 411 | 
. . . . 5
 | 
| 9 | 6, 8 | mpbid 147 | 
. . . 4
 | 
| 10 | eluz2 9607 | 
. . . 4
 | |
| 11 | 3, 5, 9, 10 | syl3anbrc 1183 | 
. . 3
 | 
| 12 | eluzfz2 10107 | 
. . 3
 | |
| 13 | 11, 12 | syl 14 | 
. 2
 | 
| 14 | fveq2 5558 | 
. . . . 5
 | |
| 15 | 14 | breq2d 4045 | 
. . . 4
 | 
| 16 | 15 | imbi2d 230 | 
. . 3
 | 
| 17 | fveq2 5558 | 
. . . . 5
 | |
| 18 | 17 | breq2d 4045 | 
. . . 4
 | 
| 19 | 18 | imbi2d 230 | 
. . 3
 | 
| 20 | fveq2 5558 | 
. . . . 5
 | |
| 21 | 20 | breq2d 4045 | 
. . . 4
 | 
| 22 | 21 | imbi2d 230 | 
. . 3
 | 
| 23 | fveq2 5558 | 
. . . . 5
 | |
| 24 | 23 | breq2d 4045 | 
. . . 4
 | 
| 25 | 24 | imbi2d 230 | 
. . 3
 | 
| 26 | nninfdclemf.a | 
. . . . 5
 | |
| 27 | nninfdclemf.dc | 
. . . . 5
 | |
| 28 | nninfdclemf.nb | 
. . . . 5
 | |
| 29 | nninfdclemf.j | 
. . . . 5
 | |
| 30 | nninfdclemf.f | 
. . . . 5
 | |
| 31 | 26, 27, 28, 29, 30, 1 | nninfdclemp1 12667 | 
. . . 4
 | 
| 32 | 31 | a1i 9 | 
. . 3
 | 
| 33 | 26 | ad2antrr 488 | 
. . . . . . . . 9
 | 
| 34 | 26, 27, 28, 29, 30 | nninfdclemf 12666 | 
. . . . . . . . . . 11
 | 
| 35 | 34 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 36 | 1 | ad2antrr 488 | 
. . . . . . . . . 10
 | 
| 37 | 35, 36 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 38 | 33, 37 | sseldd 3184 | 
. . . . . . . 8
 | 
| 39 | 38 | nnred 9003 | 
. . . . . . 7
 | 
| 40 | elfzoelz 10222 | 
. . . . . . . . . . . 12
 | |
| 41 | 40 | ad2antlr 489 | 
. . . . . . . . . . 11
 | 
| 42 | 1red 8041 | 
. . . . . . . . . . . 12
 | |
| 43 | 2 | nnred 9003 | 
. . . . . . . . . . . . 13
 | 
| 44 | 43 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 45 | 41 | zred 9448 | 
. . . . . . . . . . . 12
 | 
| 46 | 2 | nnge1d 9033 | 
. . . . . . . . . . . . 13
 | 
| 47 | 46 | ad2antrr 488 | 
. . . . . . . . . . . 12
 | 
| 48 | elfzole1 10231 | 
. . . . . . . . . . . . 13
 | |
| 49 | 48 | ad2antlr 489 | 
. . . . . . . . . . . 12
 | 
| 50 | 42, 44, 45, 47, 49 | letrd 8150 | 
. . . . . . . . . . 11
 | 
| 51 | elnnz1 9349 | 
. . . . . . . . . . 11
 | |
| 52 | 41, 50, 51 | sylanbrc 417 | 
. . . . . . . . . 10
 | 
| 53 | 35, 52 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 54 | 33, 53 | sseldd 3184 | 
. . . . . . . 8
 | 
| 55 | 54 | nnred 9003 | 
. . . . . . 7
 | 
| 56 | 52 | peano2nnd 9005 | 
. . . . . . . . . 10
 | 
| 57 | 35, 56 | ffvelcdmd 5698 | 
. . . . . . . . 9
 | 
| 58 | 33, 57 | sseldd 3184 | 
. . . . . . . 8
 | 
| 59 | 58 | nnred 9003 | 
. . . . . . 7
 | 
| 60 | simpr 110 | 
. . . . . . 7
 | |
| 61 | 27 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 62 | 28 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 63 | 29 | ad2antrr 488 | 
. . . . . . . 8
 | 
| 64 | 33, 61, 62, 63, 30, 52 | nninfdclemp1 12667 | 
. . . . . . 7
 | 
| 65 | 39, 55, 59, 60, 64 | lttrd 8152 | 
. . . . . 6
 | 
| 66 | 65 | ex 115 | 
. . . . 5
 | 
| 67 | 66 | expcom 116 | 
. . . 4
 | 
| 68 | 67 | a2d 26 | 
. . 3
 | 
| 69 | 16, 19, 22, 25, 32, 68 | fzind2 10315 | 
. 2
 | 
| 70 | 13, 69 | mpcom 36 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 df-fzo 10218 df-seqfrec 10540 | 
| This theorem is referenced by: nninfdclemf1 12669 | 
| Copyright terms: Public domain | W3C validator |