ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfdclemlt Unicode version

Theorem nninfdclemlt 12406
Description: Lemma for nninfdc 12408. The function from nninfdclemf 12404 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.)
Hypotheses
Ref Expression
nninfdclemf.a  |-  ( ph  ->  A  C_  NN )
nninfdclemf.dc  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
nninfdclemf.nb  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
nninfdclemf.j  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
nninfdclemf.f  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
nninfdclemlt.u  |-  ( ph  ->  U  e.  NN )
nninfdclemlt.v  |-  ( ph  ->  V  e.  NN )
nninfdclemlt.lt  |-  ( ph  ->  U  <  V )
Assertion
Ref Expression
nninfdclemlt  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Distinct variable groups:    A, m, n   
x, A    y, A, z    m, F, n    x, F    y, F, z    i, J    U, i    U, m, n    x, U    y, U, z    y, J, z
Allowed substitution hints:    ph( x, y, z, i, m, n)    A( i)    F( i)    J( x, m, n)    V( x, y, z, i, m, n)

Proof of Theorem nninfdclemlt
Dummy variables  k  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nninfdclemlt.u . . . . . 6  |-  ( ph  ->  U  e.  NN )
21peano2nnd 8893 . . . . 5  |-  ( ph  ->  ( U  +  1 )  e.  NN )
32nnzd 9333 . . . 4  |-  ( ph  ->  ( U  +  1 )  e.  ZZ )
4 nninfdclemlt.v . . . . 5  |-  ( ph  ->  V  e.  NN )
54nnzd 9333 . . . 4  |-  ( ph  ->  V  e.  ZZ )
6 nninfdclemlt.lt . . . . 5  |-  ( ph  ->  U  <  V )
7 nnltp1le 9272 . . . . . 6  |-  ( ( U  e.  NN  /\  V  e.  NN )  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
81, 4, 7syl2anc 409 . . . . 5  |-  ( ph  ->  ( U  <  V  <->  ( U  +  1 )  <_  V ) )
96, 8mpbid 146 . . . 4  |-  ( ph  ->  ( U  +  1 )  <_  V )
10 eluz2 9493 . . . 4  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  <->  ( ( U  +  1 )  e.  ZZ  /\  V  e.  ZZ  /\  ( U  +  1 )  <_  V ) )
113, 5, 9, 10syl3anbrc 1176 . . 3  |-  ( ph  ->  V  e.  ( ZZ>= `  ( U  +  1
) ) )
12 eluzfz2 9988 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  V  e.  ( ( U  + 
1 ) ... V
) )
1311, 12syl 14 . 2  |-  ( ph  ->  V  e.  ( ( U  +  1 ) ... V ) )
14 fveq2 5496 . . . . 5  |-  ( w  =  ( U  + 
1 )  ->  ( F `  w )  =  ( F `  ( U  +  1
) ) )
1514breq2d 4001 . . . 4  |-  ( w  =  ( U  + 
1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( U  +  1 ) ) ) )
1615imbi2d 229 . . 3  |-  ( w  =  ( U  + 
1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) ) )
17 fveq2 5496 . . . . 5  |-  ( w  =  k  ->  ( F `  w )  =  ( F `  k ) )
1817breq2d 4001 . . . 4  |-  ( w  =  k  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  k )
) )
1918imbi2d 229 . . 3  |-  ( w  =  k  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  k ) ) ) )
20 fveq2 5496 . . . . 5  |-  ( w  =  ( k  +  1 )  ->  ( F `  w )  =  ( F `  ( k  +  1 ) ) )
2120breq2d 4001 . . . 4  |-  ( w  =  ( k  +  1 )  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
2221imbi2d 229 . . 3  |-  ( w  =  ( k  +  1 )  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
23 fveq2 5496 . . . . 5  |-  ( w  =  V  ->  ( F `  w )  =  ( F `  V ) )
2423breq2d 4001 . . . 4  |-  ( w  =  V  ->  (
( F `  U
)  <  ( F `  w )  <->  ( F `  U )  <  ( F `  V )
) )
2524imbi2d 229 . . 3  |-  ( w  =  V  ->  (
( ph  ->  ( F `
 U )  < 
( F `  w
) )  <->  ( ph  ->  ( F `  U
)  <  ( F `  V ) ) ) )
26 nninfdclemf.a . . . . 5  |-  ( ph  ->  A  C_  NN )
27 nninfdclemf.dc . . . . 5  |-  ( ph  ->  A. x  e.  NN DECID  x  e.  A )
28 nninfdclemf.nb . . . . 5  |-  ( ph  ->  A. m  e.  NN  E. n  e.  A  m  <  n )
29 nninfdclemf.j . . . . 5  |-  ( ph  ->  ( J  e.  A  /\  1  <  J ) )
30 nninfdclemf.f . . . . 5  |-  F  =  seq 1 ( ( y  e.  NN , 
z  e.  NN  |-> inf ( ( A  i^i  ( ZZ>=
`  ( y  +  1 ) ) ) ,  RR ,  <  ) ) ,  ( i  e.  NN  |->  J ) )
3126, 27, 28, 29, 30, 1nninfdclemp1 12405 . . . 4  |-  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) )
3231a1i 9 . . 3  |-  ( V  e.  ( ZZ>= `  ( U  +  1 ) )  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( U  +  1 ) ) ) )
3326ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A  C_  NN )
3426, 27, 28, 29, 30nninfdclemf 12404 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> A )
3534ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  F : NN --> A )
361ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  U  e.  NN )
3735, 36ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  A )
3833, 37sseldd 3148 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  NN )
3938nnred 8891 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  e.  RR )
40 elfzoelz 10103 . . . . . . . . . . . 12  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  k  e.  ZZ )
4140ad2antlr 486 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  ZZ )
42 1red 7935 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  e.  RR )
432nnred 8891 . . . . . . . . . . . . 13  |-  ( ph  ->  ( U  +  1 )  e.  RR )
4443ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  e.  RR )
4541zred 9334 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  RR )
462nnge1d 8921 . . . . . . . . . . . . 13  |-  ( ph  ->  1  <_  ( U  +  1 ) )
4746ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  ( U  +  1 ) )
48 elfzole1 10111 . . . . . . . . . . . . 13  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( U  +  1 )  <_ 
k )
4948ad2antlr 486 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( U  +  1 )  <_  k )
5042, 44, 45, 47, 49letrd 8043 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  1  <_  k )
51 elnnz1 9235 . . . . . . . . . . 11  |-  ( k  e.  NN  <->  ( k  e.  ZZ  /\  1  <_ 
k ) )
5241, 50, 51sylanbrc 415 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  k  e.  NN )
5335, 52ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  A )
5433, 53sseldd 3148 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  NN )
5554nnred 8891 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  e.  RR )
5652peano2nnd 8893 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  (
k  +  1 )  e.  NN )
5735, 56ffvelrnd 5632 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  A )
5833, 57sseldd 3148 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  NN )
5958nnred 8891 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  ( k  +  1 ) )  e.  RR )
60 simpr 109 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  k
) )
6127ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. x  e.  NN DECID  x  e.  A )
6228ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  A. m  e.  NN  E. n  e.  A  m  <  n
)
6329ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( J  e.  A  /\  1  <  J ) )
6433, 61, 62, 63, 30, 52nninfdclemp1 12405 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  k )  <  ( F `  (
k  +  1 ) ) )
6539, 55, 59, 60, 64lttrd 8045 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  /\  ( F `
 U )  < 
( F `  k
) )  ->  ( F `  U )  <  ( F `  (
k  +  1 ) ) )
6665ex 114 . . . . 5  |-  ( (
ph  /\  k  e.  ( ( U  + 
1 )..^ V ) )  ->  ( ( F `  U )  <  ( F `  k
)  ->  ( F `  U )  <  ( F `  ( k  +  1 ) ) ) )
6766expcom 115 . . . 4  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ph  ->  ( ( F `  U )  <  ( F `  k )  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6867a2d 26 . . 3  |-  ( k  e.  ( ( U  +  1 )..^ V
)  ->  ( ( ph  ->  ( F `  U )  <  ( F `  k )
)  ->  ( ph  ->  ( F `  U
)  <  ( F `  ( k  +  1 ) ) ) ) )
6916, 19, 22, 25, 32, 68fzind2 10195 . 2  |-  ( V  e.  ( ( U  +  1 ) ... V )  ->  ( ph  ->  ( F `  U )  <  ( F `  V )
) )
7013, 69mpcom 36 1  |-  ( ph  ->  ( F `  U
)  <  ( F `  V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    i^i cin 3120    C_ wss 3121   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853    e. cmpo 5855  infcinf 6960   RRcr 7773   1c1 7775    + caddc 7777    < clt 7954    <_ cle 7955   NNcn 8878   ZZcz 9212   ZZ>=cuz 9487   ...cfz 9965  ..^cfzo 10098    seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-fz 9966  df-fzo 10099  df-seqfrec 10402
This theorem is referenced by:  nninfdclemf1  12407
  Copyright terms: Public domain W3C validator