| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfdclemlt | Unicode version | ||
| Description: Lemma for nninfdc 13024. The function from nninfdclemf 13020 is strictly monotonic. (Contributed by Jim Kingdon, 24-Sep-2024.) |
| Ref | Expression |
|---|---|
| nninfdclemf.a |
|
| nninfdclemf.dc |
|
| nninfdclemf.nb |
|
| nninfdclemf.j |
|
| nninfdclemf.f |
|
| nninfdclemlt.u |
|
| nninfdclemlt.v |
|
| nninfdclemlt.lt |
|
| Ref | Expression |
|---|---|
| nninfdclemlt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nninfdclemlt.u |
. . . . . 6
| |
| 2 | 1 | peano2nnd 9125 |
. . . . 5
|
| 3 | 2 | nnzd 9568 |
. . . 4
|
| 4 | nninfdclemlt.v |
. . . . 5
| |
| 5 | 4 | nnzd 9568 |
. . . 4
|
| 6 | nninfdclemlt.lt |
. . . . 5
| |
| 7 | nnltp1le 9507 |
. . . . . 6
| |
| 8 | 1, 4, 7 | syl2anc 411 |
. . . . 5
|
| 9 | 6, 8 | mpbid 147 |
. . . 4
|
| 10 | eluz2 9728 |
. . . 4
| |
| 11 | 3, 5, 9, 10 | syl3anbrc 1205 |
. . 3
|
| 12 | eluzfz2 10228 |
. . 3
| |
| 13 | 11, 12 | syl 14 |
. 2
|
| 14 | fveq2 5627 |
. . . . 5
| |
| 15 | 14 | breq2d 4095 |
. . . 4
|
| 16 | 15 | imbi2d 230 |
. . 3
|
| 17 | fveq2 5627 |
. . . . 5
| |
| 18 | 17 | breq2d 4095 |
. . . 4
|
| 19 | 18 | imbi2d 230 |
. . 3
|
| 20 | fveq2 5627 |
. . . . 5
| |
| 21 | 20 | breq2d 4095 |
. . . 4
|
| 22 | 21 | imbi2d 230 |
. . 3
|
| 23 | fveq2 5627 |
. . . . 5
| |
| 24 | 23 | breq2d 4095 |
. . . 4
|
| 25 | 24 | imbi2d 230 |
. . 3
|
| 26 | nninfdclemf.a |
. . . . 5
| |
| 27 | nninfdclemf.dc |
. . . . 5
| |
| 28 | nninfdclemf.nb |
. . . . 5
| |
| 29 | nninfdclemf.j |
. . . . 5
| |
| 30 | nninfdclemf.f |
. . . . 5
| |
| 31 | 26, 27, 28, 29, 30, 1 | nninfdclemp1 13021 |
. . . 4
|
| 32 | 31 | a1i 9 |
. . 3
|
| 33 | 26 | ad2antrr 488 |
. . . . . . . . 9
|
| 34 | 26, 27, 28, 29, 30 | nninfdclemf 13020 |
. . . . . . . . . . 11
|
| 35 | 34 | ad2antrr 488 |
. . . . . . . . . 10
|
| 36 | 1 | ad2antrr 488 |
. . . . . . . . . 10
|
| 37 | 35, 36 | ffvelcdmd 5771 |
. . . . . . . . 9
|
| 38 | 33, 37 | sseldd 3225 |
. . . . . . . 8
|
| 39 | 38 | nnred 9123 |
. . . . . . 7
|
| 40 | elfzoelz 10343 |
. . . . . . . . . . . 12
| |
| 41 | 40 | ad2antlr 489 |
. . . . . . . . . . 11
|
| 42 | 1red 8161 |
. . . . . . . . . . . 12
| |
| 43 | 2 | nnred 9123 |
. . . . . . . . . . . . 13
|
| 44 | 43 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 45 | 41 | zred 9569 |
. . . . . . . . . . . 12
|
| 46 | 2 | nnge1d 9153 |
. . . . . . . . . . . . 13
|
| 47 | 46 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 48 | elfzole1 10352 |
. . . . . . . . . . . . 13
| |
| 49 | 48 | ad2antlr 489 |
. . . . . . . . . . . 12
|
| 50 | 42, 44, 45, 47, 49 | letrd 8270 |
. . . . . . . . . . 11
|
| 51 | elnnz1 9469 |
. . . . . . . . . . 11
| |
| 52 | 41, 50, 51 | sylanbrc 417 |
. . . . . . . . . 10
|
| 53 | 35, 52 | ffvelcdmd 5771 |
. . . . . . . . 9
|
| 54 | 33, 53 | sseldd 3225 |
. . . . . . . 8
|
| 55 | 54 | nnred 9123 |
. . . . . . 7
|
| 56 | 52 | peano2nnd 9125 |
. . . . . . . . . 10
|
| 57 | 35, 56 | ffvelcdmd 5771 |
. . . . . . . . 9
|
| 58 | 33, 57 | sseldd 3225 |
. . . . . . . 8
|
| 59 | 58 | nnred 9123 |
. . . . . . 7
|
| 60 | simpr 110 |
. . . . . . 7
| |
| 61 | 27 | ad2antrr 488 |
. . . . . . . 8
|
| 62 | 28 | ad2antrr 488 |
. . . . . . . 8
|
| 63 | 29 | ad2antrr 488 |
. . . . . . . 8
|
| 64 | 33, 61, 62, 63, 30, 52 | nninfdclemp1 13021 |
. . . . . . 7
|
| 65 | 39, 55, 59, 60, 64 | lttrd 8272 |
. . . . . 6
|
| 66 | 65 | ex 115 |
. . . . 5
|
| 67 | 66 | expcom 116 |
. . . 4
|
| 68 | 67 | a2d 26 |
. . 3
|
| 69 | 16, 19, 22, 25, 32, 68 | fzind2 10445 |
. 2
|
| 70 | 13, 69 | mpcom 36 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-sup 7151 df-inf 7152 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 df-fzo 10339 df-seqfrec 10670 |
| This theorem is referenced by: nninfdclemf1 13023 |
| Copyright terms: Public domain | W3C validator |