ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prfidceq Unicode version

Theorem prfidceq 7098
Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
Hypotheses
Ref Expression
prfidceq.a  |-  ( ph  ->  A  e.  C )
prfidceq.b  |-  ( ph  ->  B  e.  C )
prfidceq.dc  |-  ( ph  ->  A. x  e.  C  A. y  e.  C DECID  x  =  y )
Assertion
Ref Expression
prfidceq  |-  ( ph  ->  { A ,  B }  e.  Fin )
Distinct variable groups:    x, A, y   
y, B    x, C, y
Allowed substitution hints:    ph( x, y)    B( x)

Proof of Theorem prfidceq
StepHypRef Expression
1 prfidceq.a . . . . 5  |-  ( ph  ->  A  e.  C )
2 snfig 6975 . . . . 5  |-  ( A  e.  C  ->  { A }  e.  Fin )
31, 2syl 14 . . . 4  |-  ( ph  ->  { A }  e.  Fin )
43adantr 276 . . 3  |-  ( (
ph  /\  A  =  B )  ->  { A }  e.  Fin )
5 dfsn2 3680 . . . . . 6  |-  { A }  =  { A ,  A }
6 preq2 3744 . . . . . 6  |-  ( A  =  B  ->  { A ,  A }  =  { A ,  B }
)
75, 6eqtrid 2274 . . . . 5  |-  ( A  =  B  ->  { A }  =  { A ,  B } )
87eleq1d 2298 . . . 4  |-  ( A  =  B  ->  ( { A }  e.  Fin  <->  { A ,  B }  e.  Fin ) )
98adantl 277 . . 3  |-  ( (
ph  /\  A  =  B )  ->  ( { A }  e.  Fin  <->  { A ,  B }  e.  Fin ) )
104, 9mpbid 147 . 2  |-  ( (
ph  /\  A  =  B )  ->  { A ,  B }  e.  Fin )
11 prfidceq.b . . 3  |-  ( ph  ->  B  e.  C )
12 neqne 2408 . . 3  |-  ( -.  A  =  B  ->  A  =/=  B )
13 prfidisj 7097 . . 3  |-  ( ( A  e.  C  /\  B  e.  C  /\  A  =/=  B )  ->  { A ,  B }  e.  Fin )
141, 11, 12, 13syl2an3an 1332 . 2  |-  ( (
ph  /\  -.  A  =  B )  ->  { A ,  B }  e.  Fin )
15 prfidceq.dc . . . 4  |-  ( ph  ->  A. x  e.  C  A. y  e.  C DECID  x  =  y )
16 eqeq1 2236 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  y  <->  A  =  y ) )
1716dcbid 843 . . . . . 6  |-  ( x  =  A  ->  (DECID  x  =  y  <-> DECID  A  =  y )
)
18 eqeq2 2239 . . . . . . 7  |-  ( y  =  B  ->  ( A  =  y  <->  A  =  B ) )
1918dcbid 843 . . . . . 6  |-  ( y  =  B  ->  (DECID  A  =  y  <-> DECID  A  =  B )
)
2017, 19rspc2v 2920 . . . . 5  |-  ( ( A  e.  C  /\  B  e.  C )  ->  ( A. x  e.  C  A. y  e.  C DECID  x  =  y  -> DECID  A  =  B ) )
211, 11, 20syl2anc 411 . . . 4  |-  ( ph  ->  ( A. x  e.  C  A. y  e.  C DECID  x  =  y  -> DECID  A  =  B ) )
2215, 21mpd 13 . . 3  |-  ( ph  -> DECID  A  =  B )
23 exmiddc 841 . . 3  |-  (DECID  A  =  B  ->  ( A  =  B  \/  -.  A  =  B )
)
2422, 23syl 14 . 2  |-  ( ph  ->  ( A  =  B  \/  -.  A  =  B ) )
2510, 14, 24mpjaodan 803 1  |-  ( ph  ->  { A ,  B }  e.  Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508   {csn 3666   {cpr 3667   Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by:  tpfidceq  7100  perfectlem2  15682
  Copyright terms: Public domain W3C validator