| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpfidceq | Unicode version | ||
| Description: A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| tpfidceq.a |
|
| tpfidceq.b |
|
| tpfidceq.c |
|
| tpfidceq.dc |
|
| Ref | Expression |
|---|---|
| tpfidceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3642 |
. 2
| |
| 2 | tpfidceq.c |
. . . . . . 7
| |
| 3 | snssg 3769 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | 4 | biimpa 296 |
. . . . 5
|
| 6 | ssequn2 3347 |
. . . . 5
| |
| 7 | 5, 6 | sylib 122 |
. . . 4
|
| 8 | tpfidceq.a |
. . . . . 6
| |
| 9 | tpfidceq.b |
. . . . . 6
| |
| 10 | tpfidceq.dc |
. . . . . 6
| |
| 11 | 8, 9, 10 | prfidceq 7032 |
. . . . 5
|
| 12 | 11 | adantr 276 |
. . . 4
|
| 13 | 7, 12 | eqeltrd 2283 |
. . 3
|
| 14 | 11 | adantr 276 |
. . . 4
|
| 15 | 2 | adantr 276 |
. . . 4
|
| 16 | simpr 110 |
. . . 4
| |
| 17 | unsnfi 7023 |
. . . 4
| |
| 18 | 14, 15, 16, 17 | syl3anc 1250 |
. . 3
|
| 19 | eqeq1 2213 |
. . . . . . . . . 10
| |
| 20 | 19 | dcbid 840 |
. . . . . . . . 9
|
| 21 | eqeq2 2216 |
. . . . . . . . . 10
| |
| 22 | 21 | dcbid 840 |
. . . . . . . . 9
|
| 23 | 20, 22 | rspc2va 2892 |
. . . . . . . 8
|
| 24 | 2, 8, 10, 23 | syl21anc 1249 |
. . . . . . 7
|
| 25 | elsng 3649 |
. . . . . . . . 9
| |
| 26 | 2, 25 | syl 14 |
. . . . . . . 8
|
| 27 | 26 | dcbid 840 |
. . . . . . 7
|
| 28 | 24, 27 | mpbird 167 |
. . . . . 6
|
| 29 | eqeq2 2216 |
. . . . . . . . . 10
| |
| 30 | 29 | dcbid 840 |
. . . . . . . . 9
|
| 31 | 20, 30 | rspc2va 2892 |
. . . . . . . 8
|
| 32 | 2, 9, 10, 31 | syl21anc 1249 |
. . . . . . 7
|
| 33 | elsng 3649 |
. . . . . . . . 9
| |
| 34 | 2, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 34 | dcbid 840 |
. . . . . . 7
|
| 36 | 32, 35 | mpbird 167 |
. . . . . 6
|
| 37 | 28, 36 | dcun 3571 |
. . . . 5
|
| 38 | df-pr 3641 |
. . . . . . 7
| |
| 39 | 38 | eleq2i 2273 |
. . . . . 6
|
| 40 | 39 | dcbii 842 |
. . . . 5
|
| 41 | 37, 40 | sylibr 134 |
. . . 4
|
| 42 | exmiddc 838 |
. . . 4
| |
| 43 | 41, 42 | syl 14 |
. . 3
|
| 44 | 13, 18, 43 | mpjaodan 800 |
. 2
|
| 45 | 1, 44 | eqeltrid 2293 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-tp 3642 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 |
| This theorem is referenced by: perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |