| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpfidceq | Unicode version | ||
| Description: A triple is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| tpfidceq.a |
|
| tpfidceq.b |
|
| tpfidceq.c |
|
| tpfidceq.dc |
|
| Ref | Expression |
|---|---|
| tpfidceq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3654 |
. 2
| |
| 2 | tpfidceq.c |
. . . . . . 7
| |
| 3 | snssg 3781 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | 4 | biimpa 296 |
. . . . 5
|
| 6 | ssequn2 3357 |
. . . . 5
| |
| 7 | 5, 6 | sylib 122 |
. . . 4
|
| 8 | tpfidceq.a |
. . . . . 6
| |
| 9 | tpfidceq.b |
. . . . . 6
| |
| 10 | tpfidceq.dc |
. . . . . 6
| |
| 11 | 8, 9, 10 | prfidceq 7058 |
. . . . 5
|
| 12 | 11 | adantr 276 |
. . . 4
|
| 13 | 7, 12 | eqeltrd 2286 |
. . 3
|
| 14 | 11 | adantr 276 |
. . . 4
|
| 15 | 2 | adantr 276 |
. . . 4
|
| 16 | simpr 110 |
. . . 4
| |
| 17 | unsnfi 7049 |
. . . 4
| |
| 18 | 14, 15, 16, 17 | syl3anc 1252 |
. . 3
|
| 19 | eqeq1 2216 |
. . . . . . . . . 10
| |
| 20 | 19 | dcbid 842 |
. . . . . . . . 9
|
| 21 | eqeq2 2219 |
. . . . . . . . . 10
| |
| 22 | 21 | dcbid 842 |
. . . . . . . . 9
|
| 23 | 20, 22 | rspc2va 2901 |
. . . . . . . 8
|
| 24 | 2, 8, 10, 23 | syl21anc 1251 |
. . . . . . 7
|
| 25 | elsng 3661 |
. . . . . . . . 9
| |
| 26 | 2, 25 | syl 14 |
. . . . . . . 8
|
| 27 | 26 | dcbid 842 |
. . . . . . 7
|
| 28 | 24, 27 | mpbird 167 |
. . . . . 6
|
| 29 | eqeq2 2219 |
. . . . . . . . . 10
| |
| 30 | 29 | dcbid 842 |
. . . . . . . . 9
|
| 31 | 20, 30 | rspc2va 2901 |
. . . . . . . 8
|
| 32 | 2, 9, 10, 31 | syl21anc 1251 |
. . . . . . 7
|
| 33 | elsng 3661 |
. . . . . . . . 9
| |
| 34 | 2, 33 | syl 14 |
. . . . . . . 8
|
| 35 | 34 | dcbid 842 |
. . . . . . 7
|
| 36 | 32, 35 | mpbird 167 |
. . . . . 6
|
| 37 | 28, 36 | dcun 3581 |
. . . . 5
|
| 38 | df-pr 3653 |
. . . . . . 7
| |
| 39 | 38 | eleq2i 2276 |
. . . . . 6
|
| 40 | 39 | dcbii 844 |
. . . . 5
|
| 41 | 37, 40 | sylibr 134 |
. . . 4
|
| 42 | exmiddc 840 |
. . . 4
| |
| 43 | 41, 42 | syl 14 |
. . 3
|
| 44 | 13, 18, 43 | mpjaodan 802 |
. 2
|
| 45 | 1, 44 | eqeltrid 2296 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-tp 3654 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 |
| This theorem is referenced by: perfectlem2 15639 |
| Copyright terms: Public domain | W3C validator |