ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prfidceq GIF version

Theorem prfidceq 7098
Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
Hypotheses
Ref Expression
prfidceq.a (𝜑𝐴𝐶)
prfidceq.b (𝜑𝐵𝐶)
prfidceq.dc (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)
Assertion
Ref Expression
prfidceq (𝜑 → {𝐴, 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem prfidceq
StepHypRef Expression
1 prfidceq.a . . . . 5 (𝜑𝐴𝐶)
2 snfig 6975 . . . . 5 (𝐴𝐶 → {𝐴} ∈ Fin)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ∈ Fin)
43adantr 276 . . 3 ((𝜑𝐴 = 𝐵) → {𝐴} ∈ Fin)
5 dfsn2 3680 . . . . . 6 {𝐴} = {𝐴, 𝐴}
6 preq2 3744 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
75, 6eqtrid 2274 . . . . 5 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
87eleq1d 2298 . . . 4 (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin))
98adantl 277 . . 3 ((𝜑𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin))
104, 9mpbid 147 . 2 ((𝜑𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin)
11 prfidceq.b . . 3 (𝜑𝐵𝐶)
12 neqne 2408 . . 3 𝐴 = 𝐵𝐴𝐵)
13 prfidisj 7097 . . 3 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
141, 11, 12, 13syl2an3an 1332 . 2 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin)
15 prfidceq.dc . . . 4 (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)
16 eqeq1 2236 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1716dcbid 843 . . . . . 6 (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦DECID 𝐴 = 𝑦))
18 eqeq2 2239 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1918dcbid 843 . . . . . 6 (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦DECID 𝐴 = 𝐵))
2017, 19rspc2v 2920 . . . . 5 ((𝐴𝐶𝐵𝐶) → (∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦DECID 𝐴 = 𝐵))
211, 11, 20syl2anc 411 . . . 4 (𝜑 → (∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦DECID 𝐴 = 𝐵))
2215, 21mpd 13 . . 3 (𝜑DECID 𝐴 = 𝐵)
23 exmiddc 841 . . 3 (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2422, 23syl 14 . 2 (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2510, 14, 24mpjaodan 803 1 (𝜑 → {𝐴, 𝐵} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wral 2508  {csn 3666  {cpr 3667  Fincfn 6895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1o 6568  df-er 6688  df-en 6896  df-fin 6898
This theorem is referenced by:  tpfidceq  7100  perfectlem2  15682
  Copyright terms: Public domain W3C validator