| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prfidceq | GIF version | ||
| Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| prfidceq.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prfidceq.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| prfidceq.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| prfidceq | ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfidceq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | snfig 6937 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ∈ Fin) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ∈ Fin) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴} ∈ Fin) |
| 5 | dfsn2 3660 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 6 | preq2 3724 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 7 | 5, 6 | eqtrid 2254 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵}) |
| 8 | 7 | eleq1d 2278 | . . . 4 ⊢ (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) |
| 10 | 4, 9 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 11 | prfidceq.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 12 | neqne 2388 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 13 | prfidisj 7057 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
| 14 | 1, 11, 12, 13 | syl2an3an 1313 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 15 | prfidceq.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) | |
| 16 | eqeq1 2216 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 17 | 16 | dcbid 842 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐴 = 𝑦)) |
| 18 | eqeq2 2219 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 19 | 18 | dcbid 842 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦 ↔ DECID 𝐴 = 𝐵)) |
| 20 | 17, 19 | rspc2v 2900 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) |
| 21 | 1, 11, 20 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) |
| 22 | 15, 21 | mpd 13 | . . 3 ⊢ (𝜑 → DECID 𝐴 = 𝐵) |
| 23 | exmiddc 840 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 25 | 10, 14, 24 | mpjaodan 802 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 712 DECID wdc 838 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 ∀wral 2488 {csn 3646 {cpr 3647 Fincfn 6857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 |
| This theorem is referenced by: tpfidceq 7060 perfectlem2 15639 |
| Copyright terms: Public domain | W3C validator |