ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prfidceq GIF version

Theorem prfidceq 6989
Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
Hypotheses
Ref Expression
prfidceq.a (𝜑𝐴𝐶)
prfidceq.b (𝜑𝐵𝐶)
prfidceq.dc (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)
Assertion
Ref Expression
prfidceq (𝜑 → {𝐴, 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem prfidceq
StepHypRef Expression
1 prfidceq.a . . . . 5 (𝜑𝐴𝐶)
2 snfig 6873 . . . . 5 (𝐴𝐶 → {𝐴} ∈ Fin)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ∈ Fin)
43adantr 276 . . 3 ((𝜑𝐴 = 𝐵) → {𝐴} ∈ Fin)
5 dfsn2 3636 . . . . . 6 {𝐴} = {𝐴, 𝐴}
6 preq2 3700 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
75, 6eqtrid 2241 . . . . 5 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
87eleq1d 2265 . . . 4 (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin))
98adantl 277 . . 3 ((𝜑𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin))
104, 9mpbid 147 . 2 ((𝜑𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin)
11 prfidceq.b . . 3 (𝜑𝐵𝐶)
12 neqne 2375 . . 3 𝐴 = 𝐵𝐴𝐵)
13 prfidisj 6988 . . 3 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
141, 11, 12, 13syl2an3an 1309 . 2 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin)
15 prfidceq.dc . . . 4 (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)
16 eqeq1 2203 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1716dcbid 839 . . . . . 6 (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦DECID 𝐴 = 𝑦))
18 eqeq2 2206 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1918dcbid 839 . . . . . 6 (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦DECID 𝐴 = 𝐵))
2017, 19rspc2v 2881 . . . . 5 ((𝐴𝐶𝐵𝐶) → (∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦DECID 𝐴 = 𝐵))
211, 11, 20syl2anc 411 . . . 4 (𝜑 → (∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦DECID 𝐴 = 𝐵))
2215, 21mpd 13 . . 3 (𝜑DECID 𝐴 = 𝐵)
23 exmiddc 837 . . 3 (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2422, 23syl 14 . 2 (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2510, 14, 24mpjaodan 799 1 (𝜑 → {𝐴, 𝐵} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835   = wceq 1364  wcel 2167  wne 2367  wral 2475  {csn 3622  {cpr 3623  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-1o 6474  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  tpfidceq  6991  perfectlem2  15236
  Copyright terms: Public domain W3C validator