| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > prfidceq | GIF version | ||
| Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| prfidceq.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) | 
| prfidceq.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) | 
| prfidceq.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) | 
| Ref | Expression | 
|---|---|
| prfidceq | ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prfidceq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | snfig 6873 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ∈ Fin) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ∈ Fin) | 
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴} ∈ Fin) | 
| 5 | dfsn2 3636 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 6 | preq2 3700 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 7 | 5, 6 | eqtrid 2241 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵}) | 
| 8 | 7 | eleq1d 2265 | . . . 4 ⊢ (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) | 
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) | 
| 10 | 4, 9 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) | 
| 11 | prfidceq.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 12 | neqne 2375 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 13 | prfidisj 6988 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
| 14 | 1, 11, 12, 13 | syl2an3an 1309 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) | 
| 15 | prfidceq.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) | |
| 16 | eqeq1 2203 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 17 | 16 | dcbid 839 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐴 = 𝑦)) | 
| 18 | eqeq2 2206 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 19 | 18 | dcbid 839 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦 ↔ DECID 𝐴 = 𝐵)) | 
| 20 | 17, 19 | rspc2v 2881 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) | 
| 21 | 1, 11, 20 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) | 
| 22 | 15, 21 | mpd 13 | . . 3 ⊢ (𝜑 → DECID 𝐴 = 𝐵) | 
| 23 | exmiddc 837 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | 
| 25 | 10, 14, 24 | mpjaodan 799 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 {csn 3622 {cpr 3623 Fincfn 6799 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 | 
| This theorem is referenced by: tpfidceq 6991 perfectlem2 15236 | 
| Copyright terms: Public domain | W3C validator |