ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prfidceq GIF version

Theorem prfidceq 7058
Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.)
Hypotheses
Ref Expression
prfidceq.a (𝜑𝐴𝐶)
prfidceq.b (𝜑𝐵𝐶)
prfidceq.dc (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)
Assertion
Ref Expression
prfidceq (𝜑 → {𝐴, 𝐵} ∈ Fin)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝐶,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)

Proof of Theorem prfidceq
StepHypRef Expression
1 prfidceq.a . . . . 5 (𝜑𝐴𝐶)
2 snfig 6937 . . . . 5 (𝐴𝐶 → {𝐴} ∈ Fin)
31, 2syl 14 . . . 4 (𝜑 → {𝐴} ∈ Fin)
43adantr 276 . . 3 ((𝜑𝐴 = 𝐵) → {𝐴} ∈ Fin)
5 dfsn2 3660 . . . . . 6 {𝐴} = {𝐴, 𝐴}
6 preq2 3724 . . . . . 6 (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵})
75, 6eqtrid 2254 . . . . 5 (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵})
87eleq1d 2278 . . . 4 (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin))
98adantl 277 . . 3 ((𝜑𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin))
104, 9mpbid 147 . 2 ((𝜑𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin)
11 prfidceq.b . . 3 (𝜑𝐵𝐶)
12 neqne 2388 . . 3 𝐴 = 𝐵𝐴𝐵)
13 prfidisj 7057 . . 3 ((𝐴𝐶𝐵𝐶𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
141, 11, 12, 13syl2an3an 1313 . 2 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin)
15 prfidceq.dc . . . 4 (𝜑 → ∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦)
16 eqeq1 2216 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
1716dcbid 842 . . . . . 6 (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦DECID 𝐴 = 𝑦))
18 eqeq2 2219 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 = 𝑦𝐴 = 𝐵))
1918dcbid 842 . . . . . 6 (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦DECID 𝐴 = 𝐵))
2017, 19rspc2v 2900 . . . . 5 ((𝐴𝐶𝐵𝐶) → (∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦DECID 𝐴 = 𝐵))
211, 11, 20syl2anc 411 . . . 4 (𝜑 → (∀𝑥𝐶𝑦𝐶 DECID 𝑥 = 𝑦DECID 𝐴 = 𝐵))
2215, 21mpd 13 . . 3 (𝜑DECID 𝐴 = 𝐵)
23 exmiddc 840 . . 3 (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2422, 23syl 14 . 2 (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵))
2510, 14, 24mpjaodan 802 1 (𝜑 → {𝐴, 𝐵} ∈ Fin)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 712  DECID wdc 838   = wceq 1375  wcel 2180  wne 2380  wral 2488  {csn 3646  {cpr 3647  Fincfn 6857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-1o 6532  df-er 6650  df-en 6858  df-fin 6860
This theorem is referenced by:  tpfidceq  7060  perfectlem2  15639
  Copyright terms: Public domain W3C validator