| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prfidceq | GIF version | ||
| Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| prfidceq.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prfidceq.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| prfidceq.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| prfidceq | ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfidceq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | snfig 6975 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ∈ Fin) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ∈ Fin) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴} ∈ Fin) |
| 5 | dfsn2 3680 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 6 | preq2 3744 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 7 | 5, 6 | eqtrid 2274 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵}) |
| 8 | 7 | eleq1d 2298 | . . . 4 ⊢ (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) |
| 10 | 4, 9 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 11 | prfidceq.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 12 | neqne 2408 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 13 | prfidisj 7097 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
| 14 | 1, 11, 12, 13 | syl2an3an 1332 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 15 | prfidceq.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) | |
| 16 | eqeq1 2236 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 17 | 16 | dcbid 843 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐴 = 𝑦)) |
| 18 | eqeq2 2239 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 19 | 18 | dcbid 843 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦 ↔ DECID 𝐴 = 𝐵)) |
| 20 | 17, 19 | rspc2v 2920 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) |
| 21 | 1, 11, 20 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) |
| 22 | 15, 21 | mpd 13 | . . 3 ⊢ (𝜑 → DECID 𝐴 = 𝐵) |
| 23 | exmiddc 841 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 25 | 10, 14, 24 | mpjaodan 803 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 {csn 3666 {cpr 3667 Fincfn 6895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 |
| This theorem is referenced by: tpfidceq 7100 perfectlem2 15682 |
| Copyright terms: Public domain | W3C validator |