| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prfidceq | GIF version | ||
| Description: A pair is finite if it consists of elements of a class with decidable equality. (Contributed by Jim Kingdon, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| prfidceq.a | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| prfidceq.b | ⊢ (𝜑 → 𝐵 ∈ 𝐶) |
| prfidceq.dc | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) |
| Ref | Expression |
|---|---|
| prfidceq | ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prfidceq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 2 | snfig 6913 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → {𝐴} ∈ Fin) | |
| 3 | 1, 2 | syl 14 | . . . 4 ⊢ (𝜑 → {𝐴} ∈ Fin) |
| 4 | 3 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴} ∈ Fin) |
| 5 | dfsn2 3648 | . . . . . 6 ⊢ {𝐴} = {𝐴, 𝐴} | |
| 6 | preq2 3712 | . . . . . 6 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
| 7 | 5, 6 | eqtrid 2251 | . . . . 5 ⊢ (𝐴 = 𝐵 → {𝐴} = {𝐴, 𝐵}) |
| 8 | 7 | eleq1d 2275 | . . . 4 ⊢ (𝐴 = 𝐵 → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) |
| 9 | 8 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → ({𝐴} ∈ Fin ↔ {𝐴, 𝐵} ∈ Fin)) |
| 10 | 4, 9 | mpbid 147 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 11 | prfidceq.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐶) | |
| 12 | neqne 2385 | . . 3 ⊢ (¬ 𝐴 = 𝐵 → 𝐴 ≠ 𝐵) | |
| 13 | prfidisj 7031 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
| 14 | 1, 11, 12, 13 | syl2an3an 1311 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → {𝐴, 𝐵} ∈ Fin) |
| 15 | prfidceq.dc | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦) | |
| 16 | eqeq1 2213 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 = 𝑦 ↔ 𝐴 = 𝑦)) | |
| 17 | 16 | dcbid 840 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (DECID 𝑥 = 𝑦 ↔ DECID 𝐴 = 𝑦)) |
| 18 | eqeq2 2216 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐴 = 𝑦 ↔ 𝐴 = 𝐵)) | |
| 19 | 18 | dcbid 840 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (DECID 𝐴 = 𝑦 ↔ DECID 𝐴 = 𝐵)) |
| 20 | 17, 19 | rspc2v 2891 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) |
| 21 | 1, 11, 20 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐶 DECID 𝑥 = 𝑦 → DECID 𝐴 = 𝐵)) |
| 22 | 15, 21 | mpd 13 | . . 3 ⊢ (𝜑 → DECID 𝐴 = 𝐵) |
| 23 | exmiddc 838 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ (𝜑 → (𝐴 = 𝐵 ∨ ¬ 𝐴 = 𝐵)) |
| 25 | 10, 14, 24 | mpjaodan 800 | 1 ⊢ (𝜑 → {𝐴, 𝐵} ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 {csn 3634 {cpr 3635 Fincfn 6834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 |
| This theorem is referenced by: tpfidceq 7034 perfectlem2 15516 |
| Copyright terms: Public domain | W3C validator |