Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1mapen Unicode version

Theorem pw1mapen 16321
Description: Equinumerosity of  ( ~P 1o  ^m  A ) and the set of subsets of  A. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1mapen  |-  ( A  e.  V  ->  ( ~P 1o  ^m  A ) 
~~  ~P A )

Proof of Theorem pw1mapen
Dummy variables  s  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6800 . . 3  |-  ^m  Fn  ( _V  X.  _V )
2 1oex 6568 . . . 4  |-  1o  e.  _V
32pwex 4266 . . 3  |-  ~P 1o  e.  _V
4 elex 2811 . . 3  |-  ( A  e.  V  ->  A  e.  _V )
5 fnovex 6033 . . 3  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  ~P 1o  e.  _V  /\  A  e.  _V )  ->  ( ~P 1o  ^m  A )  e.  _V )
61, 3, 4, 5mp3an12i 1375 . 2  |-  ( A  e.  V  ->  ( ~P 1o  ^m  A )  e.  _V )
7 eqid 2229 . . 3  |-  ( s  e.  ( ~P 1o  ^m  A )  |->  { z  e.  A  |  ( s `  z )  =  1o } )  =  ( s  e.  ( ~P 1o  ^m  A )  |->  { z  e.  A  |  ( s `  z )  =  1o } )
87pw1map 16320 . 2  |-  ( A  e.  V  ->  (
s  e.  ( ~P 1o  ^m  A ) 
|->  { z  e.  A  |  ( s `  z )  =  1o } ) : ( ~P 1o  ^m  A
)
-1-1-onto-> ~P A )
9 f1oeng 6906 . 2  |-  ( ( ( ~P 1o  ^m  A )  e.  _V  /\  ( s  e.  ( ~P 1o  ^m  A
)  |->  { z  e.  A  |  ( s `
 z )  =  1o } ) : ( ~P 1o  ^m  A ) -1-1-onto-> ~P A )  -> 
( ~P 1o  ^m  A )  ~~  ~P A )
106, 8, 9syl2anc 411 1  |-  ( A  e.  V  ->  ( ~P 1o  ^m  A ) 
~~  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200   {crab 2512   _Vcvv 2799   ~Pcpw 3649   class class class wbr 4082    |-> cmpt 4144    X. cxp 4716    Fn wfn 5312   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000   1oc1o 6553    ^m cmap 6793    ~~ cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-map 6795  df-en 6886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator