Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pw1mapen GIF version

Theorem pw1mapen 16321
Description: Equinumerosity of (𝒫 1o𝑚 𝐴) and the set of subsets of 𝐴. (Contributed by Jim Kingdon, 10-Jan-2026.)
Assertion
Ref Expression
pw1mapen (𝐴𝑉 → (𝒫 1o𝑚 𝐴) ≈ 𝒫 𝐴)

Proof of Theorem pw1mapen
Dummy variables 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6800 . . 3 𝑚 Fn (V × V)
2 1oex 6568 . . . 4 1o ∈ V
32pwex 4266 . . 3 𝒫 1o ∈ V
4 elex 2811 . . 3 (𝐴𝑉𝐴 ∈ V)
5 fnovex 6033 . . 3 (( ↑𝑚 Fn (V × V) ∧ 𝒫 1o ∈ V ∧ 𝐴 ∈ V) → (𝒫 1o𝑚 𝐴) ∈ V)
61, 3, 4, 5mp3an12i 1375 . 2 (𝐴𝑉 → (𝒫 1o𝑚 𝐴) ∈ V)
7 eqid 2229 . . 3 (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}) = (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o})
87pw1map 16320 . 2 (𝐴𝑉 → (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}):(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴)
9 f1oeng 6906 . 2 (((𝒫 1o𝑚 𝐴) ∈ V ∧ (𝑠 ∈ (𝒫 1o𝑚 𝐴) ↦ {𝑧𝐴 ∣ (𝑠𝑧) = 1o}):(𝒫 1o𝑚 𝐴)–1-1-onto→𝒫 𝐴) → (𝒫 1o𝑚 𝐴) ≈ 𝒫 𝐴)
106, 8, 9syl2anc 411 1 (𝐴𝑉 → (𝒫 1o𝑚 𝐴) ≈ 𝒫 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  {crab 2512  Vcvv 2799  𝒫 cpw 3649   class class class wbr 4082  cmpt 4144   × cxp 4716   Fn wfn 5312  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  1oc1o 6553  𝑚 cmap 6793  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-map 6795  df-en 6886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator