| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pw1mapen | GIF version | ||
| Description: Equinumerosity of (𝒫 1o ↑𝑚 𝐴) and the set of subsets of 𝐴. (Contributed by Jim Kingdon, 10-Jan-2026.) |
| Ref | Expression |
|---|---|
| pw1mapen | ⊢ (𝐴 ∈ 𝑉 → (𝒫 1o ↑𝑚 𝐴) ≈ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnmap 6755 | . . 3 ⊢ ↑𝑚 Fn (V × V) | |
| 2 | 1oex 6523 | . . . 4 ⊢ 1o ∈ V | |
| 3 | 2 | pwex 4235 | . . 3 ⊢ 𝒫 1o ∈ V |
| 4 | elex 2785 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 5 | fnovex 5990 | . . 3 ⊢ (( ↑𝑚 Fn (V × V) ∧ 𝒫 1o ∈ V ∧ 𝐴 ∈ V) → (𝒫 1o ↑𝑚 𝐴) ∈ V) | |
| 6 | 1, 3, 4, 5 | mp3an12i 1354 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝒫 1o ↑𝑚 𝐴) ∈ V) |
| 7 | eqid 2206 | . . 3 ⊢ (𝑠 ∈ (𝒫 1o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) = (𝑠 ∈ (𝒫 1o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}) | |
| 8 | 7 | pw1map 16073 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑠 ∈ (𝒫 1o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}):(𝒫 1o ↑𝑚 𝐴)–1-1-onto→𝒫 𝐴) |
| 9 | f1oeng 6861 | . 2 ⊢ (((𝒫 1o ↑𝑚 𝐴) ∈ V ∧ (𝑠 ∈ (𝒫 1o ↑𝑚 𝐴) ↦ {𝑧 ∈ 𝐴 ∣ (𝑠‘𝑧) = 1o}):(𝒫 1o ↑𝑚 𝐴)–1-1-onto→𝒫 𝐴) → (𝒫 1o ↑𝑚 𝐴) ≈ 𝒫 𝐴) | |
| 10 | 6, 8, 9 | syl2anc 411 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝒫 1o ↑𝑚 𝐴) ≈ 𝒫 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {crab 2489 Vcvv 2773 𝒫 cpw 3621 class class class wbr 4051 ↦ cmpt 4113 × cxp 4681 Fn wfn 5275 –1-1-onto→wf1o 5279 ‘cfv 5280 (class class class)co 5957 1oc1o 6508 ↑𝑚 cmap 6748 ≈ cen 6838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-1o 6515 df-map 6750 df-en 6841 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |