ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpval Unicode version

Theorem cnpval 14434
Description: The set of all functions from topology  J to topology  K that are continuous at a point  P. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Distinct variable groups:    x, f, y, J    f, K, x, y    f, X, x, y    P, f, x, y   
f, Y, x, y

Proof of Theorem cnpval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cnpfval 14431 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) )
21fveq1d 5560 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( J  CnP  K ) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
) )
32adantr 276 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) `  P ) )
4 eqid 2196 . . . 4  |-  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } )
5 fveq2 5558 . . . . . . . 8  |-  ( v  =  P  ->  (
f `  v )  =  ( f `  P ) )
65eleq1d 2265 . . . . . . 7  |-  ( v  =  P  ->  (
( f `  v
)  e.  y  <->  ( f `  P )  e.  y ) )
7 eleq1 2259 . . . . . . . . 9  |-  ( v  =  P  ->  (
v  e.  x  <->  P  e.  x ) )
87anbi1d 465 . . . . . . . 8  |-  ( v  =  P  ->  (
( v  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
98rexbidv 2498 . . . . . . 7  |-  ( v  =  P  ->  ( E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
106, 9imbi12d 234 . . . . . 6  |-  ( v  =  P  ->  (
( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) ) )
1110ralbidv 2497 . . . . 5  |-  ( v  =  P  ->  ( A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) ) )
1211rabbidv 2752 . . . 4  |-  ( v  =  P  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) }  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
13 simpr 110 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  P  e.  X )
14 fnmap 6714 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
15 toponmax 14261 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
1615elexd 2776 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
1716ad2antlr 489 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  Y  e.  _V )
18 toponmax 14261 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1918elexd 2776 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
2019ad2antrr 488 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  X  e.  _V )
21 fnovex 5955 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
2214, 17, 20, 21mp3an2i 1353 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  ( Y  ^m  X )  e. 
_V )
23 rabexg 4176 . . . . 5  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V )
2422, 23syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V )
254, 12, 13, 24fvmptd3 5655 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
)  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
263, 25eqtrd 2229 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) } )
27263impa 1196 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   E.wrex 2476   {crab 2479   _Vcvv 2763    C_ wss 3157    |-> cmpt 4094    X. cxp 4661   "cima 4666    Fn wfn 5253   ` cfv 5258  (class class class)co 5922    ^m cmap 6707  TopOnctopon 14246    CnP ccnp 14422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-top 14234  df-topon 14247  df-cnp 14425
This theorem is referenced by:  iscnp  14435
  Copyright terms: Public domain W3C validator