Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnpval | Unicode version |
Description: The set of all functions from topology to topology that are continuous at a point . (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
cnpval | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnpfval 12989 | . . . . 5 TopOn TopOn | |
2 | 1 | fveq1d 5498 | . . . 4 TopOn TopOn |
3 | 2 | adantr 274 | . . 3 TopOn TopOn |
4 | eqid 2170 | . . . 4 | |
5 | fveq2 5496 | . . . . . . . 8 | |
6 | 5 | eleq1d 2239 | . . . . . . 7 |
7 | eleq1 2233 | . . . . . . . . 9 | |
8 | 7 | anbi1d 462 | . . . . . . . 8 |
9 | 8 | rexbidv 2471 | . . . . . . 7 |
10 | 6, 9 | imbi12d 233 | . . . . . 6 |
11 | 10 | ralbidv 2470 | . . . . 5 |
12 | 11 | rabbidv 2719 | . . . 4 |
13 | simpr 109 | . . . 4 TopOn TopOn | |
14 | fnmap 6633 | . . . . . 6 | |
15 | toponmax 12817 | . . . . . . . 8 TopOn | |
16 | 15 | elexd 2743 | . . . . . . 7 TopOn |
17 | 16 | ad2antlr 486 | . . . . . 6 TopOn TopOn |
18 | toponmax 12817 | . . . . . . . 8 TopOn | |
19 | 18 | elexd 2743 | . . . . . . 7 TopOn |
20 | 19 | ad2antrr 485 | . . . . . 6 TopOn TopOn |
21 | fnovex 5886 | . . . . . 6 | |
22 | 14, 17, 20, 21 | mp3an2i 1337 | . . . . 5 TopOn TopOn |
23 | rabexg 4132 | . . . . 5 | |
24 | 22, 23 | syl 14 | . . . 4 TopOn TopOn |
25 | 4, 12, 13, 24 | fvmptd3 5589 | . . 3 TopOn TopOn |
26 | 3, 25 | eqtrd 2203 | . 2 TopOn TopOn |
27 | 26 | 3impa 1189 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cmpt 4050 cxp 4609 cima 4614 wfn 5193 cfv 5198 (class class class)co 5853 cmap 6626 TopOnctopon 12802 ccnp 12980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-top 12790 df-topon 12803 df-cnp 12983 |
This theorem is referenced by: iscnp 12993 |
Copyright terms: Public domain | W3C validator |