Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnpval | Unicode version |
Description: The set of all functions from topology to topology that are continuous at a point . (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
cnpval | TopOn TopOn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnpfval 12954 | . . . . 5 TopOn TopOn | |
2 | 1 | fveq1d 5496 | . . . 4 TopOn TopOn |
3 | 2 | adantr 274 | . . 3 TopOn TopOn |
4 | eqid 2170 | . . . 4 | |
5 | fveq2 5494 | . . . . . . . 8 | |
6 | 5 | eleq1d 2239 | . . . . . . 7 |
7 | eleq1 2233 | . . . . . . . . 9 | |
8 | 7 | anbi1d 462 | . . . . . . . 8 |
9 | 8 | rexbidv 2471 | . . . . . . 7 |
10 | 6, 9 | imbi12d 233 | . . . . . 6 |
11 | 10 | ralbidv 2470 | . . . . 5 |
12 | 11 | rabbidv 2719 | . . . 4 |
13 | simpr 109 | . . . 4 TopOn TopOn | |
14 | fnmap 6631 | . . . . . 6 | |
15 | toponmax 12782 | . . . . . . . 8 TopOn | |
16 | 15 | elexd 2743 | . . . . . . 7 TopOn |
17 | 16 | ad2antlr 486 | . . . . . 6 TopOn TopOn |
18 | toponmax 12782 | . . . . . . . 8 TopOn | |
19 | 18 | elexd 2743 | . . . . . . 7 TopOn |
20 | 19 | ad2antrr 485 | . . . . . 6 TopOn TopOn |
21 | fnovex 5884 | . . . . . 6 | |
22 | 14, 17, 20, 21 | mp3an2i 1337 | . . . . 5 TopOn TopOn |
23 | rabexg 4130 | . . . . 5 | |
24 | 22, 23 | syl 14 | . . . 4 TopOn TopOn |
25 | 4, 12, 13, 24 | fvmptd3 5587 | . . 3 TopOn TopOn |
26 | 3, 25 | eqtrd 2203 | . 2 TopOn TopOn |
27 | 26 | 3impa 1189 | 1 TopOn TopOn |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 cvv 2730 wss 3121 cmpt 4048 cxp 4607 cima 4612 wfn 5191 cfv 5196 (class class class)co 5851 cmap 6624 TopOnctopon 12767 ccnp 12945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-map 6626 df-top 12755 df-topon 12768 df-cnp 12948 |
This theorem is referenced by: iscnp 12958 |
Copyright terms: Public domain | W3C validator |