ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnpval Unicode version

Theorem cnpval 13737
Description: The set of all functions from topology  J to topology  K that are continuous at a point  P. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Assertion
Ref Expression
cnpval  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Distinct variable groups:    x, f, y, J    f, K, x, y    f, X, x, y    P, f, x, y   
f, Y, x, y

Proof of Theorem cnpval
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 cnpfval 13734 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( J  CnP  K )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) )
21fveq1d 5519 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( J  CnP  K ) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
) )
32adantr 276 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  ( ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } ) `  P ) )
4 eqid 2177 . . . 4  |-  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) } )  =  ( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } )
5 fveq2 5517 . . . . . . . 8  |-  ( v  =  P  ->  (
f `  v )  =  ( f `  P ) )
65eleq1d 2246 . . . . . . 7  |-  ( v  =  P  ->  (
( f `  v
)  e.  y  <->  ( f `  P )  e.  y ) )
7 eleq1 2240 . . . . . . . . 9  |-  ( v  =  P  ->  (
v  e.  x  <->  P  e.  x ) )
87anbi1d 465 . . . . . . . 8  |-  ( v  =  P  ->  (
( v  e.  x  /\  ( f " x
)  C_  y )  <->  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
98rexbidv 2478 . . . . . . 7  |-  ( v  =  P  ->  ( E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) )
106, 9imbi12d 234 . . . . . 6  |-  ( v  =  P  ->  (
( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) ) )
1110ralbidv 2477 . . . . 5  |-  ( v  =  P  ->  ( A. y  e.  K  ( ( f `  v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
)  <->  A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) ) )
1211rabbidv 2728 . . . 4  |-  ( v  =  P  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  v
)  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  ( f " x
)  C_  y )
) }  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
13 simpr 110 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  P  e.  X )
14 fnmap 6657 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
15 toponmax 13564 . . . . . . . 8  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  K )
1615elexd 2752 . . . . . . 7  |-  ( K  e.  (TopOn `  Y
)  ->  Y  e.  _V )
1716ad2antlr 489 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  Y  e.  _V )
18 toponmax 13564 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
1918elexd 2752 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  _V )
2019ad2antrr 488 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  X  e.  _V )
21 fnovex 5910 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  Y  e.  _V  /\  X  e. 
_V )  ->  ( Y  ^m  X )  e. 
_V )
2214, 17, 20, 21mp3an2i 1342 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  ( Y  ^m  X )  e. 
_V )
23 rabexg 4148 . . . . 5  |-  ( ( Y  ^m  X )  e.  _V  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V )
2422, 23syl 14 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) }  e.  _V )
254, 12, 13, 24fvmptd3 5611 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( v  e.  X  |->  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 v )  e.  y  ->  E. x  e.  J  ( v  e.  x  /\  (
f " x ) 
C_  y ) ) } ) `  P
)  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  (
( f `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
263, 25eqtrd 2210 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  P  e.  X )  ->  (
( J  CnP  K
) `  P )  =  { f  e.  ( Y  ^m  X )  |  A. y  e.  K  ( ( f `
 P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  (
f " x ) 
C_  y ) ) } )
27263impa 1194 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  P  e.  X
)  ->  ( ( J  CnP  K ) `  P )  =  {
f  e.  ( Y  ^m  X )  | 
A. y  e.  K  ( ( f `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( f " x
)  C_  y )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459   _Vcvv 2739    C_ wss 3131    |-> cmpt 4066    X. cxp 4626   "cima 4631    Fn wfn 5213   ` cfv 5218  (class class class)co 5877    ^m cmap 6650  TopOnctopon 13549    CnP ccnp 13725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-map 6652  df-top 13537  df-topon 13550  df-cnp 13728
This theorem is referenced by:  iscnp  13738
  Copyright terms: Public domain W3C validator