ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval4 Unicode version

Theorem shftval4 10770
Description: Value of a sequence shifted by  -u A. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1  |-  F  e. 
_V
Assertion
Ref Expression
shftval4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B
)  =  ( F `
 ( A  +  B ) ) )

Proof of Theorem shftval4
StepHypRef Expression
1 negcl 8098 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
2 shftfval.1 . . . 4  |-  F  e. 
_V
32shftval 10767 . . 3  |-  ( (
-u A  e.  CC  /\  B  e.  CC )  ->  ( ( F 
shift  -u A ) `  B )  =  ( F `  ( B  -  -u A ) ) )
41, 3sylan 281 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B
)  =  ( F `
 ( B  -  -u A ) ) )
5 subneg 8147 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  ( B  -  -u A
)  =  ( B  +  A ) )
65ancoms 266 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  -u A
)  =  ( B  +  A ) )
7 addcom 8035 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  =  ( B  +  A ) )
86, 7eqtr4d 2201 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  -  -u A
)  =  ( A  +  B ) )
98fveq2d 5490 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( F `  ( B  -  -u A ) )  =  ( F `
 ( A  +  B ) ) )
104, 9eqtrd 2198 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( F  shift  -u A ) `  B
)  =  ( F `
 ( A  +  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   ` cfv 5188  (class class class)co 5842   CCcc 7751    + caddc 7756    - cmin 8069   -ucneg 8070    shift cshi 10756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072  df-shft 10757
This theorem is referenced by:  shftval4g  10779  eftlub  11631
  Copyright terms: Public domain W3C validator