ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval4g Unicode version

Theorem shftval4g 10878
Description: Value of a sequence shifted by  -u A. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
shftval4g  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  -u A
) `  B )  =  ( F `  ( A  +  B
) ) )

Proof of Theorem shftval4g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 oveq1 5903 . . . . . 6  |-  ( f  =  F  ->  (
f  shift  -u A )  =  ( F  shift  -u A
) )
21fveq1d 5536 . . . . 5  |-  ( f  =  F  ->  (
( f  shift  -u A
) `  B )  =  ( ( F 
shift  -u A ) `  B ) )
3 fveq1 5533 . . . . 5  |-  ( f  =  F  ->  (
f `  ( A  +  B ) )  =  ( F `  ( A  +  B )
) )
42, 3eqeq12d 2204 . . . 4  |-  ( f  =  F  ->  (
( ( f  shift  -u A ) `  B
)  =  ( f `
 ( A  +  B ) )  <->  ( ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) ) )
54imbi2d 230 . . 3  |-  ( f  =  F  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( f  shift  -u A
) `  B )  =  ( f `  ( A  +  B
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  -u A
) `  B )  =  ( F `  ( A  +  B
) ) ) ) )
6 vex 2755 . . . 4  |-  f  e. 
_V
76shftval4 10869 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( f  shift  -u A ) `  B
)  =  ( f `
 ( A  +  B ) ) )
85, 7vtoclg 2812 . 2  |-  ( F  e.  V  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( F 
shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) ) )
983impib 1203 1  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  -u A
) `  B )  =  ( F `  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5235  (class class class)co 5896   CCcc 7839    + caddc 7844   -ucneg 8159    shift cshi 10855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-resscn 7933  ax-1cn 7934  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-sub 8160  df-neg 8161  df-shft 10856
This theorem is referenced by:  climshft2  11346
  Copyright terms: Public domain W3C validator