ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval4g Unicode version

Theorem shftval4g 11181
Description: Value of a sequence shifted by  -u A. (Contributed by Jim Kingdon, 19-Aug-2021.)
Assertion
Ref Expression
shftval4g  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  -u A
) `  B )  =  ( F `  ( A  +  B
) ) )

Proof of Theorem shftval4g
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 oveq1 5953 . . . . . 6  |-  ( f  =  F  ->  (
f  shift  -u A )  =  ( F  shift  -u A
) )
21fveq1d 5580 . . . . 5  |-  ( f  =  F  ->  (
( f  shift  -u A
) `  B )  =  ( ( F 
shift  -u A ) `  B ) )
3 fveq1 5577 . . . . 5  |-  ( f  =  F  ->  (
f `  ( A  +  B ) )  =  ( F `  ( A  +  B )
) )
42, 3eqeq12d 2220 . . . 4  |-  ( f  =  F  ->  (
( ( f  shift  -u A ) `  B
)  =  ( f `
 ( A  +  B ) )  <->  ( ( F  shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) ) )
54imbi2d 230 . . 3  |-  ( f  =  F  ->  (
( ( A  e.  CC  /\  B  e.  CC )  ->  (
( f  shift  -u A
) `  B )  =  ( f `  ( A  +  B
) ) )  <->  ( ( A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  -u A
) `  B )  =  ( F `  ( A  +  B
) ) ) ) )
6 vex 2775 . . . 4  |-  f  e. 
_V
76shftval4 11172 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( f  shift  -u A ) `  B
)  =  ( f `
 ( A  +  B ) ) )
85, 7vtoclg 2833 . 2  |-  ( F  e.  V  ->  (
( A  e.  CC  /\  B  e.  CC )  ->  ( ( F 
shift  -u A ) `  B )  =  ( F `  ( A  +  B ) ) ) )
983impib 1204 1  |-  ( ( F  e.  V  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( F  shift  -u A
) `  B )  =  ( F `  ( A  +  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   CCcc 7925    + caddc 7930   -ucneg 8246    shift cshi 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-resscn 8019  ax-1cn 8020  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-sub 8247  df-neg 8248  df-shft 11159
This theorem is referenced by:  climshft2  11650
  Copyright terms: Public domain W3C validator