ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  shftval4 GIF version

Theorem shftval4 10612
Description: Value of a sequence shifted by -𝐴. (Contributed by NM, 18-Aug-2005.) (Revised by Mario Carneiro, 5-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftval4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))

Proof of Theorem shftval4
StepHypRef Expression
1 negcl 7974 . . 3 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
2 shftfval.1 . . . 4 𝐹 ∈ V
32shftval 10609 . . 3 ((-𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐵 − -𝐴)))
41, 3sylan 281 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐵 − -𝐴)))
5 subneg 8023 . . . . 5 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 − -𝐴) = (𝐵 + 𝐴))
65ancoms 266 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − -𝐴) = (𝐵 + 𝐴))
7 addcom 7911 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
86, 7eqtr4d 2175 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 − -𝐴) = (𝐴 + 𝐵))
98fveq2d 5425 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐹‘(𝐵 − -𝐴)) = (𝐹‘(𝐴 + 𝐵)))
104, 9eqtrd 2172 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐹 shift -𝐴)‘𝐵) = (𝐹‘(𝐴 + 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1331  wcel 1480  Vcvv 2686  cfv 5123  (class class class)co 5774  cc 7630   + caddc 7635  cmin 7945  -cneg 7946   shift cshi 10598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-resscn 7724  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-sub 7947  df-neg 7948  df-shft 10599
This theorem is referenced by:  shftval4g  10621  eftlub  11408
  Copyright terms: Public domain W3C validator