Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negcl | Unicode version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 8093 | . 2 | |
2 | 0cn 7912 | . . 3 | |
3 | subcl 8118 | . . 3 | |
4 | 2, 3 | mpan 422 | . 2 |
5 | 1, 4 | eqeltrid 2257 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 (class class class)co 5853 cc 7772 cc0 7774 cmin 8090 cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-resscn 7866 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 |
This theorem is referenced by: negicn 8120 negcon1 8171 negdi 8176 negdi2 8177 negsubdi2 8178 neg2sub 8179 negcli 8187 negcld 8217 mulneg2 8315 mul2neg 8317 mulsub 8320 apsub1 8561 subap0 8562 divnegap 8623 divsubdirap 8625 divsubdivap 8645 eqneg 8649 div2negap 8652 divneg2ap 8653 zeo 9317 sqneg 10535 binom2sub 10589 shftval4 10792 shftcan1 10798 shftcan2 10799 crim 10822 resub 10834 imsub 10842 cjneg 10854 cjsub 10856 absneg 11014 abs2dif2 11071 subcn2 11274 efcan 11639 efap0 11640 efne0 11641 efneg 11642 efsub 11644 sinneg 11689 cosneg 11690 tannegap 11691 efmival 11696 sinsub 11703 cossub 11704 sincossq 11711 sin2pim 13528 cos2pim 13529 rpcxpsub 13623 |
Copyright terms: Public domain | W3C validator |