| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcl | Unicode version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8320 |
. 2
| |
| 2 | 0cn 8138 |
. . 3
| |
| 3 | subcl 8345 |
. . 3
| |
| 4 | 2, 3 | mpan 424 |
. 2
|
| 5 | 1, 4 | eqeltrid 2316 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8091 ax-1cn 8092 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-sub 8319 df-neg 8320 |
| This theorem is referenced by: negicn 8347 negcon1 8398 negdi 8403 negdi2 8404 negsubdi2 8405 neg2sub 8406 negcli 8414 negcld 8444 mulneg2 8542 mul2neg 8544 mulsub 8547 apsub1 8789 subap0 8790 divnegap 8853 divsubdirap 8855 divsubdivap 8875 eqneg 8879 div2negap 8882 divneg2ap 8883 zeo 9552 sqneg 10820 binom2sub 10875 shftval4 11339 shftcan1 11345 shftcan2 11346 crim 11369 resub 11381 imsub 11389 cjneg 11401 cjsub 11403 absneg 11561 abs2dif2 11618 subcn2 11822 efcan 12187 efap0 12188 efne0 12189 efneg 12190 efsub 12192 sinneg 12237 cosneg 12238 tannegap 12239 efmival 12244 sinsub 12251 cossub 12252 sincossq 12259 cncrng 14533 cnfldneg 14537 sin2pim 15487 cos2pim 15488 rpcxpsub 15582 |
| Copyright terms: Public domain | W3C validator |