![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negcl | Unicode version |
Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
Ref | Expression |
---|---|
negcl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 8193 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 0cn 8011 |
. . 3
![]() ![]() ![]() ![]() | |
3 | subcl 8218 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | mpan 424 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | eqeltrid 2280 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 |
This theorem is referenced by: negicn 8220 negcon1 8271 negdi 8276 negdi2 8277 negsubdi2 8278 neg2sub 8279 negcli 8287 negcld 8317 mulneg2 8415 mul2neg 8417 mulsub 8420 apsub1 8661 subap0 8662 divnegap 8725 divsubdirap 8727 divsubdivap 8747 eqneg 8751 div2negap 8754 divneg2ap 8755 zeo 9422 sqneg 10669 binom2sub 10724 shftval4 10972 shftcan1 10978 shftcan2 10979 crim 11002 resub 11014 imsub 11022 cjneg 11034 cjsub 11036 absneg 11194 abs2dif2 11251 subcn2 11454 efcan 11819 efap0 11820 efne0 11821 efneg 11822 efsub 11824 sinneg 11869 cosneg 11870 tannegap 11871 efmival 11876 sinsub 11883 cossub 11884 sincossq 11891 cncrng 14057 cnfldneg 14061 sin2pim 14948 cos2pim 14949 rpcxpsub 15043 |
Copyright terms: Public domain | W3C validator |