| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negcl | Unicode version | ||
| Description: Closure law for negative. (Contributed by NM, 6-Aug-2003.) |
| Ref | Expression |
|---|---|
| negcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 8217 |
. 2
| |
| 2 | 0cn 8035 |
. . 3
| |
| 3 | subcl 8242 |
. . 3
| |
| 4 | 2, 3 | mpan 424 |
. 2
|
| 5 | 1, 4 | eqeltrid 2283 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-resscn 7988 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 |
| This theorem is referenced by: negicn 8244 negcon1 8295 negdi 8300 negdi2 8301 negsubdi2 8302 neg2sub 8303 negcli 8311 negcld 8341 mulneg2 8439 mul2neg 8441 mulsub 8444 apsub1 8686 subap0 8687 divnegap 8750 divsubdirap 8752 divsubdivap 8772 eqneg 8776 div2negap 8779 divneg2ap 8780 zeo 9448 sqneg 10707 binom2sub 10762 shftval4 11010 shftcan1 11016 shftcan2 11017 crim 11040 resub 11052 imsub 11060 cjneg 11072 cjsub 11074 absneg 11232 abs2dif2 11289 subcn2 11493 efcan 11858 efap0 11859 efne0 11860 efneg 11861 efsub 11863 sinneg 11908 cosneg 11909 tannegap 11910 efmival 11915 sinsub 11922 cossub 11923 sincossq 11930 cncrng 14201 cnfldneg 14205 sin2pim 15133 cos2pim 15134 rpcxpsub 15228 |
| Copyright terms: Public domain | W3C validator |