ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trivsubgsnd Unicode version

Theorem trivsubgsnd 13157
Description: The only subgroup of a trivial group is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.)
Hypotheses
Ref Expression
trivsubgsnd.1  |-  B  =  ( Base `  G
)
trivsubgsnd.2  |-  .0.  =  ( 0g `  G )
trivsubgsnd.3  |-  ( ph  ->  G  e.  Grp )
trivsubgsnd.4  |-  ( ph  ->  B  =  {  .0.  } )
Assertion
Ref Expression
trivsubgsnd  |-  ( ph  ->  (SubGrp `  G )  =  { B } )

Proof of Theorem trivsubgsnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 trivsubgsnd.1 . . . . . 6  |-  B  =  ( Base `  G
)
2 trivsubgsnd.2 . . . . . 6  |-  .0.  =  ( 0g `  G )
3 trivsubgsnd.3 . . . . . . 7  |-  ( ph  ->  G  e.  Grp )
43adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  (SubGrp `  G ) )  ->  G  e.  Grp )
5 trivsubgsnd.4 . . . . . . 7  |-  ( ph  ->  B  =  {  .0.  } )
65adantr 276 . . . . . 6  |-  ( (
ph  /\  x  e.  (SubGrp `  G ) )  ->  B  =  {  .0.  } )
7 simpr 110 . . . . . 6  |-  ( (
ph  /\  x  e.  (SubGrp `  G ) )  ->  x  e.  (SubGrp `  G ) )
81, 2, 4, 6, 7trivsubgd 13156 . . . . 5  |-  ( (
ph  /\  x  e.  (SubGrp `  G ) )  ->  x  =  B )
9 velsn 3624 . . . . 5  |-  ( x  e.  { B }  <->  x  =  B )
108, 9sylibr 134 . . . 4  |-  ( (
ph  /\  x  e.  (SubGrp `  G ) )  ->  x  e.  { B } )
1110ex 115 . . 3  |-  ( ph  ->  ( x  e.  (SubGrp `  G )  ->  x  e.  { B } ) )
1211ssrdv 3176 . 2  |-  ( ph  ->  (SubGrp `  G )  C_ 
{ B } )
131subgid 13131 . . . 4  |-  ( G  e.  Grp  ->  B  e.  (SubGrp `  G )
)
143, 13syl 14 . . 3  |-  ( ph  ->  B  e.  (SubGrp `  G ) )
1514snssd 3752 . 2  |-  ( ph  ->  { B }  C_  (SubGrp `  G ) )
1612, 15eqssd 3187 1  |-  ( ph  ->  (SubGrp `  G )  =  { B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {csn 3607   ` cfv 5235   Basecbs 12515   0gc0g 12764   Grpcgrp 12960  SubGrpcsubg 13123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-addcom 7942  ax-addass 7944  ax-i2m1 7947  ax-0lt1 7948  ax-0id 7950  ax-rnegex 7951  ax-pre-ltirr 7954  ax-pre-ltadd 7958
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-sets 12522  df-iress 12523  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-subg 13126
This theorem is referenced by:  trivnsgd  13173
  Copyright terms: Public domain W3C validator