ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsuc2 Unicode version

Theorem fzsuc2 10171
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 9652 . 2  |-  ( N  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( N  =  ( M  - 
1 )  \/  N  e.  ( ZZ>= `  ( ( M  -  1 )  +  1 ) ) ) )
2 zcn 9348 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
3 ax-1cn 7989 . . . . . . . 8  |-  1  e.  CC
4 npcan 8252 . . . . . . . 8  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
52, 3, 4sylancl 413 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  +  1 )  =  M )
65oveq2d 5941 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  -  1 )  +  1 ) )  =  ( M ... M
) )
7 uncom 3308 . . . . . . . 8  |-  ( (/)  u. 
{ M } )  =  ( { M }  u.  (/) )
8 un0 3485 . . . . . . . 8  |-  ( { M }  u.  (/) )  =  { M }
97, 8eqtri 2217 . . . . . . 7  |-  ( (/)  u. 
{ M } )  =  { M }
10 zre 9347 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1110ltm1d 8976 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
12 peano2zm 9381 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
13 fzn 10134 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1412, 13mpdan 421 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1511, 14mpbid 147 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
165sneqd 3636 . . . . . . . 8  |-  ( M  e.  ZZ  ->  { ( ( M  -  1 )  +  1 ) }  =  { M } )
1715, 16uneq12d 3319 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } )  =  (
(/)  u.  { M } ) )
18 fzsn 10158 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
199, 17, 183eqtr4a 2255 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } )  =  ( M ... M ) )
206, 19eqtr4d 2232 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  -  1 )  +  1 ) )  =  ( ( M ... ( M  -  1
) )  u.  {
( ( M  - 
1 )  +  1 ) } ) )
21 oveq1 5932 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  ( N  +  1 )  =  ( ( M  -  1 )  +  1 ) )
2221oveq2d 5941 . . . . . 6  |-  ( N  =  ( M  - 
1 )  ->  ( M ... ( N  + 
1 ) )  =  ( M ... (
( M  -  1 )  +  1 ) ) )
23 oveq2 5933 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  ( M ... N )  =  ( M ... ( M  -  1 ) ) )
2421sneqd 3636 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  { ( N  +  1 ) }  =  { ( ( M  -  1 )  +  1 ) } )
2523, 24uneq12d 3319 . . . . . 6  |-  ( N  =  ( M  - 
1 )  ->  (
( M ... N
)  u.  { ( N  +  1 ) } )  =  ( ( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } ) )
2622, 25eqeq12d 2211 . . . . 5  |-  ( N  =  ( M  - 
1 )  ->  (
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } )  <->  ( M ... ( ( M  - 
1 )  +  1 ) )  =  ( ( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } ) ) )
2720, 26syl5ibrcom 157 . . . 4  |-  ( M  e.  ZZ  ->  ( N  =  ( M  -  1 )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) ) )
2827imp 124 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( M  -  1 ) )  ->  ( M ... ( N  +  1
) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
295fveq2d 5565 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M )
)
3029eleq2d 2266 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) )  <->  N  e.  ( ZZ>= `  M )
) )
3130biimpa 296 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M ) )
32 fzsuc 10161 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
3331, 32syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
3428, 33jaodan 798 . 2  |-  ( ( M  e.  ZZ  /\  ( N  =  ( M  -  1 )  \/  N  e.  (
ZZ>= `  ( ( M  -  1 )  +  1 ) ) ) )  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
351, 34sylan2 286 1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167    u. cun 3155   (/)c0 3451   {csn 3623   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    < clt 8078    - cmin 8214   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  fseq1p1m1  10186  frecfzennn  10535  zfz1isolemsplit  10947  fsumm1  11598  fprodm1  11780
  Copyright terms: Public domain W3C validator