ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsuc2 Unicode version

Theorem fzsuc2 9890
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 9383 . 2  |-  ( N  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( N  =  ( M  - 
1 )  \/  N  e.  ( ZZ>= `  ( ( M  -  1 )  +  1 ) ) ) )
2 zcn 9083 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
3 ax-1cn 7737 . . . . . . . 8  |-  1  e.  CC
4 npcan 7995 . . . . . . . 8  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
52, 3, 4sylancl 410 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  +  1 )  =  M )
65oveq2d 5798 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  -  1 )  +  1 ) )  =  ( M ... M
) )
7 uncom 3225 . . . . . . . 8  |-  ( (/)  u. 
{ M } )  =  ( { M }  u.  (/) )
8 un0 3401 . . . . . . . 8  |-  ( { M }  u.  (/) )  =  { M }
97, 8eqtri 2161 . . . . . . 7  |-  ( (/)  u. 
{ M } )  =  { M }
10 zre 9082 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1110ltm1d 8714 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
12 peano2zm 9116 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
13 fzn 9853 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1412, 13mpdan 418 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1511, 14mpbid 146 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
165sneqd 3545 . . . . . . . 8  |-  ( M  e.  ZZ  ->  { ( ( M  -  1 )  +  1 ) }  =  { M } )
1715, 16uneq12d 3236 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } )  =  (
(/)  u.  { M } ) )
18 fzsn 9877 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
199, 17, 183eqtr4a 2199 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } )  =  ( M ... M ) )
206, 19eqtr4d 2176 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  -  1 )  +  1 ) )  =  ( ( M ... ( M  -  1
) )  u.  {
( ( M  - 
1 )  +  1 ) } ) )
21 oveq1 5789 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  ( N  +  1 )  =  ( ( M  -  1 )  +  1 ) )
2221oveq2d 5798 . . . . . 6  |-  ( N  =  ( M  - 
1 )  ->  ( M ... ( N  + 
1 ) )  =  ( M ... (
( M  -  1 )  +  1 ) ) )
23 oveq2 5790 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  ( M ... N )  =  ( M ... ( M  -  1 ) ) )
2421sneqd 3545 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  { ( N  +  1 ) }  =  { ( ( M  -  1 )  +  1 ) } )
2523, 24uneq12d 3236 . . . . . 6  |-  ( N  =  ( M  - 
1 )  ->  (
( M ... N
)  u.  { ( N  +  1 ) } )  =  ( ( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } ) )
2622, 25eqeq12d 2155 . . . . 5  |-  ( N  =  ( M  - 
1 )  ->  (
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } )  <->  ( M ... ( ( M  - 
1 )  +  1 ) )  =  ( ( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } ) ) )
2720, 26syl5ibrcom 156 . . . 4  |-  ( M  e.  ZZ  ->  ( N  =  ( M  -  1 )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) ) )
2827imp 123 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( M  -  1 ) )  ->  ( M ... ( N  +  1
) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
295fveq2d 5433 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M )
)
3029eleq2d 2210 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) )  <->  N  e.  ( ZZ>= `  M )
) )
3130biimpa 294 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M ) )
32 fzsuc 9880 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
3331, 32syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
3428, 33jaodan 787 . 2  |-  ( ( M  e.  ZZ  /\  ( N  =  ( M  -  1 )  \/  N  e.  (
ZZ>= `  ( ( M  -  1 )  +  1 ) ) ) )  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
351, 34sylan2 284 1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481    u. cun 3074   (/)c0 3368   {csn 3532   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    < clt 7824    - cmin 7957   ZZcz 9078   ZZ>=cuz 9350   ...cfz 9821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079  df-uz 9351  df-fz 9822
This theorem is referenced by:  fseq1p1m1  9905  frecfzennn  10230  zfz1isolemsplit  10613  fsumm1  11217
  Copyright terms: Public domain W3C validator