ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsuc2 Unicode version

Theorem fzsuc2 10275
Description: Join a successor to the end of a finite set of sequential integers. (Contributed by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fzsuc2  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )

Proof of Theorem fzsuc2
StepHypRef Expression
1 uzp1 9756 . 2  |-  ( N  e.  ( ZZ>= `  ( M  -  1 ) )  ->  ( N  =  ( M  - 
1 )  \/  N  e.  ( ZZ>= `  ( ( M  -  1 )  +  1 ) ) ) )
2 zcn 9451 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  CC )
3 ax-1cn 8092 . . . . . . . 8  |-  1  e.  CC
4 npcan 8355 . . . . . . . 8  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( ( M  - 
1 )  +  1 )  =  M )
52, 3, 4sylancl 413 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  +  1 )  =  M )
65oveq2d 6017 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  -  1 )  +  1 ) )  =  ( M ... M
) )
7 uncom 3348 . . . . . . . 8  |-  ( (/)  u. 
{ M } )  =  ( { M }  u.  (/) )
8 un0 3525 . . . . . . . 8  |-  ( { M }  u.  (/) )  =  { M }
97, 8eqtri 2250 . . . . . . 7  |-  ( (/)  u. 
{ M } )  =  { M }
10 zre 9450 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  M  e.  RR )
1110ltm1d 9079 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  ( M  -  1 )  <  M )
12 peano2zm 9484 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  ( M  -  1 )  e.  ZZ )
13 fzn 10238 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  ( M  -  1
)  e.  ZZ )  ->  ( ( M  -  1 )  < 
M  <->  ( M ... ( M  -  1
) )  =  (/) ) )
1412, 13mpdan 421 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  (
( M  -  1 )  <  M  <->  ( M ... ( M  -  1 ) )  =  (/) ) )
1511, 14mpbid 147 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... ( M  - 
1 ) )  =  (/) )
165sneqd 3679 . . . . . . . 8  |-  ( M  e.  ZZ  ->  { ( ( M  -  1 )  +  1 ) }  =  { M } )
1715, 16uneq12d 3359 . . . . . . 7  |-  ( M  e.  ZZ  ->  (
( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } )  =  (
(/)  u.  { M } ) )
18 fzsn 10262 . . . . . . 7  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
199, 17, 183eqtr4a 2288 . . . . . 6  |-  ( M  e.  ZZ  ->  (
( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } )  =  ( M ... M ) )
206, 19eqtr4d 2265 . . . . 5  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  -  1 )  +  1 ) )  =  ( ( M ... ( M  -  1
) )  u.  {
( ( M  - 
1 )  +  1 ) } ) )
21 oveq1 6008 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  ( N  +  1 )  =  ( ( M  -  1 )  +  1 ) )
2221oveq2d 6017 . . . . . 6  |-  ( N  =  ( M  - 
1 )  ->  ( M ... ( N  + 
1 ) )  =  ( M ... (
( M  -  1 )  +  1 ) ) )
23 oveq2 6009 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  ( M ... N )  =  ( M ... ( M  -  1 ) ) )
2421sneqd 3679 . . . . . . 7  |-  ( N  =  ( M  - 
1 )  ->  { ( N  +  1 ) }  =  { ( ( M  -  1 )  +  1 ) } )
2523, 24uneq12d 3359 . . . . . 6  |-  ( N  =  ( M  - 
1 )  ->  (
( M ... N
)  u.  { ( N  +  1 ) } )  =  ( ( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } ) )
2622, 25eqeq12d 2244 . . . . 5  |-  ( N  =  ( M  - 
1 )  ->  (
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } )  <->  ( M ... ( ( M  - 
1 )  +  1 ) )  =  ( ( M ... ( M  -  1 ) )  u.  { ( ( M  -  1 )  +  1 ) } ) ) )
2720, 26syl5ibrcom 157 . . . 4  |-  ( M  e.  ZZ  ->  ( N  =  ( M  -  1 )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) ) )
2827imp 124 . . 3  |-  ( ( M  e.  ZZ  /\  N  =  ( M  -  1 ) )  ->  ( M ... ( N  +  1
) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
295fveq2d 5631 . . . . . 6  |-  ( M  e.  ZZ  ->  ( ZZ>=
`  ( ( M  -  1 )  +  1 ) )  =  ( ZZ>= `  M )
)
3029eleq2d 2299 . . . . 5  |-  ( M  e.  ZZ  ->  ( N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) )  <->  N  e.  ( ZZ>= `  M )
) )
3130biimpa 296 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  ->  N  e.  ( ZZ>= `  M ) )
32 fzsuc 10265 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
3331, 32syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( ( M  - 
1 )  +  1 ) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
3428, 33jaodan 802 . 2  |-  ( ( M  e.  ZZ  /\  ( N  =  ( M  -  1 )  \/  N  e.  (
ZZ>= `  ( ( M  -  1 )  +  1 ) ) ) )  ->  ( M ... ( N  +  1 ) )  =  ( ( M ... N
)  u.  { ( N  +  1 ) } ) )
351, 34sylan2 286 1  |-  ( ( M  e.  ZZ  /\  N  e.  ( ZZ>= `  ( M  -  1
) ) )  -> 
( M ... ( N  +  1 ) )  =  ( ( M ... N )  u.  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200    u. cun 3195   (/)c0 3491   {csn 3666   class class class wbr 4083   ` cfv 5318  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    < clt 8181    - cmin 8317   ZZcz 9446   ZZ>=cuz 9722   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  fseq1p1m1  10290  frecfzennn  10648  zfz1isolemsplit  11060  fsumm1  11927  fprodm1  12109
  Copyright terms: Public domain W3C validator