ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4ALT Unicode version

Theorem uzind4ALT 9479
Description: Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9478 or uzind4ALT 9479 may be used; see comment for nnind 8828. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uzind4ALT.5  |-  ( M  e.  ZZ  ->  ps )
uzind4ALT.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
uzind4ALT.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4ALT.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4ALT.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4ALT.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
uzind4ALT  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4ALT
StepHypRef Expression
1 uzind4ALT.1 . 2  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
2 uzind4ALT.2 . 2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3 uzind4ALT.3 . 2  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4 uzind4ALT.4 . 2  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5 uzind4ALT.5 . 2  |-  ( M  e.  ZZ  ->  ps )
6 uzind4ALT.6 . 2  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
71, 2, 3, 4, 5, 6uzind4 9478 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1332    e. wcel 2125   ` cfv 5163  (class class class)co 5814   1c1 7712    + caddc 7714   ZZcz 9146   ZZ>=cuz 9418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-ltadd 7827
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-inn 8813  df-n0 9070  df-z 9147  df-uz 9419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator