ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4ALT Unicode version

Theorem uzind4ALT 9680
Description: Induction on the upper set of integers that starts at an integer  M. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9679 or uzind4ALT 9680 may be used; see comment for nnind 9023. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uzind4ALT.5  |-  ( M  e.  ZZ  ->  ps )
uzind4ALT.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
uzind4ALT.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4ALT.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4ALT.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4ALT.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
Assertion
Ref Expression
uzind4ALT  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4ALT
StepHypRef Expression
1 uzind4ALT.1 . 2  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
2 uzind4ALT.2 . 2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
3 uzind4ALT.3 . 2  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
4 uzind4ALT.4 . 2  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
5 uzind4ALT.5 . 2  |-  ( M  e.  ZZ  ->  ps )
6 uzind4ALT.6 . 2  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
71, 2, 3, 4, 5, 6uzind4 9679 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   1c1 7897    + caddc 7899   ZZcz 9343   ZZ>=cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator