ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4 Unicode version

Theorem uzind4 9602
Description: Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind4.5  |-  ( M  e.  ZZ  ->  ps )
uzind4.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9547 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 9551 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 eluzle 9554 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
4 breq2 4019 . . . 4  |-  ( m  =  N  ->  ( M  <_  m  <->  M  <_  N ) )
54elrab 2905 . . 3  |-  ( N  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
62, 3, 5sylanbrc 417 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  { m  e.  ZZ  |  M  <_  m } )
7 uzind4.1 . . 3  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
8 uzind4.2 . . 3  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
9 uzind4.3 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
10 uzind4.4 . . 3  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
11 uzind4.5 . . 3  |-  ( M  e.  ZZ  ->  ps )
12 breq2 4019 . . . . . 6  |-  ( m  =  k  ->  ( M  <_  m  <->  M  <_  k ) )
1312elrab 2905 . . . . 5  |-  ( k  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( k  e.  ZZ  /\  M  <_ 
k ) )
14 eluz2 9548 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_ 
k ) )
1514biimpri 133 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  k  e.  ( ZZ>= `  M )
)
16153expb 1205 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( k  e.  ZZ  /\  M  <_  k )
)  ->  k  e.  ( ZZ>= `  M )
)
1713, 16sylan2b 287 . . . 4  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  k  e.  ( ZZ>= `  M )
)
18 uzind4.6 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
1917, 18syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ( ch  ->  th ) )
207, 8, 9, 10, 11, 19uzind3 9380 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ta )
211, 6, 20syl2anc 411 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   {crab 2469   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   1c1 7826    + caddc 7828    <_ cle 8007   ZZcz 9267   ZZ>=cuz 9542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-addcom 7925  ax-addass 7927  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-0id 7933  ax-rnegex 7934  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-ltadd 7941
This theorem depends on definitions:  df-bi 117  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-inn 8934  df-n0 9191  df-z 9268  df-uz 9543
This theorem is referenced by:  uzind4ALT  9603  uzind4s  9604  uzind4s2  9605  uzind4i  9606  frec2uzrand  10419  uzsinds  10456  seq3fveq2  10483  seq3shft2  10487  monoord  10490  seq3split  10493  seq3id2  10523  seq3homo  10524  seq3z  10525  leexp2r  10588  cvgratnnlemnexp  11546  cvgratnnlemmn  11547  clim2prod  11561  fprodabs  11638  dvdsfac  11880  zsupcllemex  11961  ennnfonelemkh  12427
  Copyright terms: Public domain W3C validator