ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzind4 Unicode version

Theorem uzind4 9653
Description: Induction on the upper set of integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind4.5  |-  ( M  e.  ZZ  ->  ps )
uzind4.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzel2 9597 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 9601 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 eluzle 9604 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
4 breq2 4033 . . . 4  |-  ( m  =  N  ->  ( M  <_  m  <->  M  <_  N ) )
54elrab 2916 . . 3  |-  ( N  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
62, 3, 5sylanbrc 417 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  { m  e.  ZZ  |  M  <_  m } )
7 uzind4.1 . . 3  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
8 uzind4.2 . . 3  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
9 uzind4.3 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
10 uzind4.4 . . 3  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
11 uzind4.5 . . 3  |-  ( M  e.  ZZ  ->  ps )
12 breq2 4033 . . . . . 6  |-  ( m  =  k  ->  ( M  <_  m  <->  M  <_  k ) )
1312elrab 2916 . . . . 5  |-  ( k  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( k  e.  ZZ  /\  M  <_ 
k ) )
14 eluz2 9598 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_ 
k ) )
1514biimpri 133 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  k  e.  ( ZZ>= `  M )
)
16153expb 1206 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( k  e.  ZZ  /\  M  <_  k )
)  ->  k  e.  ( ZZ>= `  M )
)
1713, 16sylan2b 287 . . . 4  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  k  e.  ( ZZ>= `  M )
)
18 uzind4.6 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
1917, 18syl 14 . . 3  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ( ch  ->  th ) )
207, 8, 9, 10, 11, 19uzind3 9430 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ta )
211, 6, 20syl2anc 411 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   1c1 7873    + caddc 7875    <_ cle 8055   ZZcz 9317   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  uzind4ALT  9654  uzind4s  9655  uzind4s2  9656  uzind4i  9657  frec2uzrand  10476  uzsinds  10515  seq3fveq2  10546  seq3shft2  10552  seqshft2g  10553  monoord  10556  seq3split  10559  seqsplitg  10560  seqf1og  10592  seq3id2  10597  seq3homo  10598  seq3z  10599  leexp2r  10664  cvgratnnlemnexp  11667  cvgratnnlemmn  11668  clim2prod  11682  fprodabs  11759  dvdsfac  12002  zsupcllemex  12083  ennnfonelemkh  12569  gsumfzconst  13411
  Copyright terms: Public domain W3C validator