| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uzind4ALT | GIF version | ||
| Description: Induction on the upper set of integers that starts at an integer 𝑀. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either uzind4 9711 or uzind4ALT 9712 may be used; see comment for nnind 9054. (Contributed by NM, 7-Sep-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| uzind4ALT.5 | ⊢ (𝑀 ∈ ℤ → 𝜓) |
| uzind4ALT.6 | ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) |
| uzind4ALT.1 | ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) |
| uzind4ALT.2 | ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) |
| uzind4ALT.3 | ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) |
| uzind4ALT.4 | ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) |
| Ref | Expression |
|---|---|
| uzind4ALT | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind4ALT.1 | . 2 ⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) | |
| 2 | uzind4ALT.2 | . 2 ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) | |
| 3 | uzind4ALT.3 | . 2 ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) | |
| 4 | uzind4ALT.4 | . 2 ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) | |
| 5 | uzind4ALT.5 | . 2 ⊢ (𝑀 ∈ ℤ → 𝜓) | |
| 6 | uzind4ALT.6 | . 2 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → (𝜒 → 𝜃)) | |
| 7 | 1, 2, 3, 4, 5, 6 | uzind4 9711 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 ‘cfv 5272 (class class class)co 5946 1c1 7928 + caddc 7930 ℤcz 9374 ℤ≥cuz 9650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |