ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegcon1d Unicode version

Theorem xrnegcon1d 11575
Description: Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
Hypotheses
Ref Expression
xrnegcon1d.a  |-  ( ph  ->  A  e.  RR* )
xrnegcon1d.b  |-  ( ph  ->  B  e.  RR* )
Assertion
Ref Expression
xrnegcon1d  |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )

Proof of Theorem xrnegcon1d
StepHypRef Expression
1 xrnegcon1d.b . . . 4  |-  ( ph  ->  B  e.  RR* )
2 xnegneg 9955 . . . . 5  |-  ( B  e.  RR*  ->  -e  -e B  =  B )
32eqeq2d 2217 . . . 4  |-  ( B  e.  RR*  ->  (  -e A  =  -e  -e B  <->  -e A  =  B ) )
41, 3syl 14 . . 3  |-  ( ph  ->  (  -e A  =  -e  -e B  <->  -e A  =  B ) )
5 xrnegcon1d.a . . . 4  |-  ( ph  ->  A  e.  RR* )
61xnegcld 9977 . . . 4  |-  ( ph  -> 
-e B  e. 
RR* )
7 xneg11 9956 . . . 4  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR* )  ->  (  -e A  =  -e  -e B  <->  A  =  -e
B ) )
85, 6, 7syl2anc 411 . . 3  |-  ( ph  ->  (  -e A  =  -e  -e B  <->  A  =  -e
B ) )
94, 8bitr3d 190 . 2  |-  ( ph  ->  (  -e A  =  B  <->  A  =  -e B ) )
10 eqcom 2207 . 2  |-  ( A  =  -e B  <->  -e B  =  A )
119, 10bitrdi 196 1  |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2176   RR*cxr 8106    -ecxne 9891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-sub 8245  df-neg 8246  df-xneg 9894
This theorem is referenced by:  xrminmax  11576  xrmineqinf  11580
  Copyright terms: Public domain W3C validator