ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrnegcon1d Unicode version

Theorem xrnegcon1d 11410
Description: Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.)
Hypotheses
Ref Expression
xrnegcon1d.a  |-  ( ph  ->  A  e.  RR* )
xrnegcon1d.b  |-  ( ph  ->  B  e.  RR* )
Assertion
Ref Expression
xrnegcon1d  |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )

Proof of Theorem xrnegcon1d
StepHypRef Expression
1 xrnegcon1d.b . . . 4  |-  ( ph  ->  B  e.  RR* )
2 xnegneg 9902 . . . . 5  |-  ( B  e.  RR*  ->  -e  -e B  =  B )
32eqeq2d 2205 . . . 4  |-  ( B  e.  RR*  ->  (  -e A  =  -e  -e B  <->  -e A  =  B ) )
41, 3syl 14 . . 3  |-  ( ph  ->  (  -e A  =  -e  -e B  <->  -e A  =  B ) )
5 xrnegcon1d.a . . . 4  |-  ( ph  ->  A  e.  RR* )
61xnegcld 9924 . . . 4  |-  ( ph  -> 
-e B  e. 
RR* )
7 xneg11 9903 . . . 4  |-  ( ( A  e.  RR*  /\  -e
B  e.  RR* )  ->  (  -e A  =  -e  -e B  <->  A  =  -e
B ) )
85, 6, 7syl2anc 411 . . 3  |-  ( ph  ->  (  -e A  =  -e  -e B  <->  A  =  -e
B ) )
94, 8bitr3d 190 . 2  |-  ( ph  ->  (  -e A  =  B  <->  A  =  -e B ) )
10 eqcom 2195 . 2  |-  ( A  =  -e B  <->  -e B  =  A )
119, 10bitrdi 196 1  |-  ( ph  ->  (  -e A  =  B  <->  -e B  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2164   RR*cxr 8055    -ecxne 9838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-sub 8194  df-neg 8195  df-xneg 9841
This theorem is referenced by:  xrminmax  11411  xrmineqinf  11415
  Copyright terms: Public domain W3C validator