![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > xrnegcon1d | GIF version |
Description: Contraposition law for extended real unary minus. (Contributed by Jim Kingdon, 2-May-2023.) |
Ref | Expression |
---|---|
xrnegcon1d.a | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrnegcon1d.b | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
Ref | Expression |
---|---|
xrnegcon1d | ⊢ (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnegcon1d.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
2 | xnegneg 9899 | . . . . 5 ⊢ (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵) | |
3 | 2 | eqeq2d 2205 | . . . 4 ⊢ (𝐵 ∈ ℝ* → (-𝑒𝐴 = -𝑒-𝑒𝐵 ↔ -𝑒𝐴 = 𝐵)) |
4 | 1, 3 | syl 14 | . . 3 ⊢ (𝜑 → (-𝑒𝐴 = -𝑒-𝑒𝐵 ↔ -𝑒𝐴 = 𝐵)) |
5 | xrnegcon1d.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
6 | 1 | xnegcld 9921 | . . . 4 ⊢ (𝜑 → -𝑒𝐵 ∈ ℝ*) |
7 | xneg11 9900 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (-𝑒𝐴 = -𝑒-𝑒𝐵 ↔ 𝐴 = -𝑒𝐵)) | |
8 | 5, 6, 7 | syl2anc 411 | . . 3 ⊢ (𝜑 → (-𝑒𝐴 = -𝑒-𝑒𝐵 ↔ 𝐴 = -𝑒𝐵)) |
9 | 4, 8 | bitr3d 190 | . 2 ⊢ (𝜑 → (-𝑒𝐴 = 𝐵 ↔ 𝐴 = -𝑒𝐵)) |
10 | eqcom 2195 | . 2 ⊢ (𝐴 = -𝑒𝐵 ↔ -𝑒𝐵 = 𝐴) | |
11 | 9, 10 | bitrdi 196 | 1 ⊢ (𝜑 → (-𝑒𝐴 = 𝐵 ↔ -𝑒𝐵 = 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ℝ*cxr 8053 -𝑒cxne 9835 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-if 3558 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-sub 8192 df-neg 8193 df-xneg 9838 |
This theorem is referenced by: xrminmax 11408 xrmineqinf 11412 |
Copyright terms: Public domain | W3C validator |