ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zaddcllempos GIF version

Theorem zaddcllempos 9249
Description: Lemma for zaddcl 9252. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
Assertion
Ref Expression
zaddcllempos ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)

Proof of Theorem zaddcllempos
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . 5 (𝑥 = 1 → (𝑀 + 𝑥) = (𝑀 + 1))
21eleq1d 2239 . . . 4 (𝑥 = 1 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 1) ∈ ℤ))
32imbi2d 229 . . 3 (𝑥 = 1 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)))
4 oveq2 5861 . . . . 5 (𝑥 = 𝑦 → (𝑀 + 𝑥) = (𝑀 + 𝑦))
54eleq1d 2239 . . . 4 (𝑥 = 𝑦 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑦) ∈ ℤ))
65imbi2d 229 . . 3 (𝑥 = 𝑦 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ)))
7 oveq2 5861 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑀 + 𝑥) = (𝑀 + (𝑦 + 1)))
87eleq1d 2239 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ))
98imbi2d 229 . . 3 (𝑥 = (𝑦 + 1) → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)))
10 oveq2 5861 . . . . 5 (𝑥 = 𝑁 → (𝑀 + 𝑥) = (𝑀 + 𝑁))
1110eleq1d 2239 . . . 4 (𝑥 = 𝑁 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑁) ∈ ℤ))
1211imbi2d 229 . . 3 (𝑥 = 𝑁 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)))
13 peano2z 9248 . . 3 (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ)
14 peano2z 9248 . . . . . 6 ((𝑀 + 𝑦) ∈ ℤ → ((𝑀 + 𝑦) + 1) ∈ ℤ)
15 zcn 9217 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1615adantl 275 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ)
17 nncn 8886 . . . . . . . . 9 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1817adantr 274 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑦 ∈ ℂ)
19 1cnd 7936 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ)
2016, 18, 19addassd 7942 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) + 1) = (𝑀 + (𝑦 + 1)))
2120eleq1d 2239 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (((𝑀 + 𝑦) + 1) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ))
2214, 21syl5ib 153 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))
2322ex 114 . . . 4 (𝑦 ∈ ℕ → (𝑀 ∈ ℤ → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)))
2423a2d 26 . . 3 (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)))
253, 6, 9, 12, 13, 24nnind 8894 . 2 (𝑁 ∈ ℕ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))
2625impcom 124 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  (class class class)co 5853  cc 7772  1c1 7775   + caddc 7777  cn 8878  cz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213
This theorem is referenced by:  zaddcl  9252
  Copyright terms: Public domain W3C validator