![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zaddcllempos | GIF version |
Description: Lemma for zaddcl 9291. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zaddcllempos | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5882 | . . . . 5 ⊢ (𝑥 = 1 → (𝑀 + 𝑥) = (𝑀 + 1)) | |
2 | 1 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 1 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 1) ∈ ℤ)) |
3 | 2 | imbi2d 230 | . . 3 ⊢ (𝑥 = 1 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ))) |
4 | oveq2 5882 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑀 + 𝑥) = (𝑀 + 𝑦)) | |
5 | 4 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑦) ∈ ℤ)) |
6 | 5 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ))) |
7 | oveq2 5882 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑀 + 𝑥) = (𝑀 + (𝑦 + 1))) | |
8 | 7 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
9 | 8 | imbi2d 230 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
10 | oveq2 5882 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑀 + 𝑥) = (𝑀 + 𝑁)) | |
11 | 10 | eleq1d 2246 | . . . 4 ⊢ (𝑥 = 𝑁 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑁) ∈ ℤ)) |
12 | 11 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝑁 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))) |
13 | peano2z 9287 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
14 | peano2z 9287 | . . . . . 6 ⊢ ((𝑀 + 𝑦) ∈ ℤ → ((𝑀 + 𝑦) + 1) ∈ ℤ) | |
15 | zcn 9256 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
16 | 15 | adantl 277 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
17 | nncn 8925 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
18 | 17 | adantr 276 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑦 ∈ ℂ) |
19 | 1cnd 7972 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ) | |
20 | 16, 18, 19 | addassd 7978 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) + 1) = (𝑀 + (𝑦 + 1))) |
21 | 20 | eleq1d 2246 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (((𝑀 + 𝑦) + 1) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
22 | 14, 21 | imbitrid 154 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
23 | 22 | ex 115 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝑀 ∈ ℤ → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
24 | 23 | a2d 26 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
25 | 3, 6, 9, 12, 13, 24 | nnind 8933 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 25 | impcom 125 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 (class class class)co 5874 ℂcc 7808 1c1 7811 + caddc 7813 ℕcn 8917 ℤcz 9251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-iota 5178 df-fun 5218 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-sub 8128 df-neg 8129 df-inn 8918 df-n0 9175 df-z 9252 |
This theorem is referenced by: zaddcl 9291 |
Copyright terms: Public domain | W3C validator |