| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zaddcllempos | GIF version | ||
| Description: Lemma for zaddcl 9394. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| zaddcllempos | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5942 | . . . . 5 ⊢ (𝑥 = 1 → (𝑀 + 𝑥) = (𝑀 + 1)) | |
| 2 | 1 | eleq1d 2273 | . . . 4 ⊢ (𝑥 = 1 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 1) ∈ ℤ)) |
| 3 | 2 | imbi2d 230 | . . 3 ⊢ (𝑥 = 1 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ))) |
| 4 | oveq2 5942 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑀 + 𝑥) = (𝑀 + 𝑦)) | |
| 5 | 4 | eleq1d 2273 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑦) ∈ ℤ)) |
| 6 | 5 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ))) |
| 7 | oveq2 5942 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑀 + 𝑥) = (𝑀 + (𝑦 + 1))) | |
| 8 | 7 | eleq1d 2273 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
| 9 | 8 | imbi2d 230 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
| 10 | oveq2 5942 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑀 + 𝑥) = (𝑀 + 𝑁)) | |
| 11 | 10 | eleq1d 2273 | . . . 4 ⊢ (𝑥 = 𝑁 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑁) ∈ ℤ)) |
| 12 | 11 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝑁 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))) |
| 13 | peano2z 9390 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
| 14 | peano2z 9390 | . . . . . 6 ⊢ ((𝑀 + 𝑦) ∈ ℤ → ((𝑀 + 𝑦) + 1) ∈ ℤ) | |
| 15 | zcn 9359 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 16 | 15 | adantl 277 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 17 | nncn 9026 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 18 | 17 | adantr 276 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑦 ∈ ℂ) |
| 19 | 1cnd 8070 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ) | |
| 20 | 16, 18, 19 | addassd 8077 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) + 1) = (𝑀 + (𝑦 + 1))) |
| 21 | 20 | eleq1d 2273 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (((𝑀 + 𝑦) + 1) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
| 22 | 14, 21 | imbitrid 154 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
| 23 | 22 | ex 115 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝑀 ∈ ℤ → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
| 24 | 23 | a2d 26 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
| 25 | 3, 6, 9, 12, 13, 24 | nnind 9034 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)) |
| 26 | 25 | impcom 125 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ℂcc 7905 1c1 7908 + caddc 7910 ℕcn 9018 ℤcz 9354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-sub 8227 df-neg 8228 df-inn 9019 df-n0 9278 df-z 9355 |
| This theorem is referenced by: zaddcl 9394 lswccatn0lsw 11042 |
| Copyright terms: Public domain | W3C validator |