![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zaddcllempos | GIF version |
Description: Lemma for zaddcl 8888. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zaddcllempos | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5698 | . . . . 5 ⊢ (𝑥 = 1 → (𝑀 + 𝑥) = (𝑀 + 1)) | |
2 | 1 | eleq1d 2163 | . . . 4 ⊢ (𝑥 = 1 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 1) ∈ ℤ)) |
3 | 2 | imbi2d 229 | . . 3 ⊢ (𝑥 = 1 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ))) |
4 | oveq2 5698 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑀 + 𝑥) = (𝑀 + 𝑦)) | |
5 | 4 | eleq1d 2163 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑦) ∈ ℤ)) |
6 | 5 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ))) |
7 | oveq2 5698 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑀 + 𝑥) = (𝑀 + (𝑦 + 1))) | |
8 | 7 | eleq1d 2163 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
9 | 8 | imbi2d 229 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
10 | oveq2 5698 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑀 + 𝑥) = (𝑀 + 𝑁)) | |
11 | 10 | eleq1d 2163 | . . . 4 ⊢ (𝑥 = 𝑁 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑁) ∈ ℤ)) |
12 | 11 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝑁 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))) |
13 | peano2z 8884 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
14 | peano2z 8884 | . . . . . 6 ⊢ ((𝑀 + 𝑦) ∈ ℤ → ((𝑀 + 𝑦) + 1) ∈ ℤ) | |
15 | zcn 8853 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
16 | 15 | adantl 272 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
17 | nncn 8528 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
18 | 17 | adantr 271 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑦 ∈ ℂ) |
19 | 1cnd 7601 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ) | |
20 | 16, 18, 19 | addassd 7607 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) + 1) = (𝑀 + (𝑦 + 1))) |
21 | 20 | eleq1d 2163 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (((𝑀 + 𝑦) + 1) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
22 | 14, 21 | syl5ib 153 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
23 | 22 | ex 114 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝑀 ∈ ℤ → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
24 | 23 | a2d 26 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
25 | 3, 6, 9, 12, 13, 24 | nnind 8536 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 25 | impcom 124 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1296 ∈ wcel 1445 (class class class)co 5690 ℂcc 7445 1c1 7448 + caddc 7450 ℕcn 8520 ℤcz 8848 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 ax-setind 4381 ax-cnex 7533 ax-resscn 7534 ax-1cn 7535 ax-1re 7536 ax-icn 7537 ax-addcl 7538 ax-addrcl 7539 ax-mulcl 7540 ax-addcom 7542 ax-addass 7544 ax-distr 7546 ax-i2m1 7547 ax-0id 7550 ax-rnegex 7551 ax-cnre 7553 |
This theorem depends on definitions: df-bi 116 df-3or 928 df-3an 929 df-tru 1299 df-fal 1302 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-rex 2376 df-reu 2377 df-rab 2379 df-v 2635 df-sbc 2855 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-int 3711 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fv 5057 df-riota 5646 df-ov 5693 df-oprab 5694 df-mpt2 5695 df-sub 7752 df-neg 7753 df-inn 8521 df-n0 8772 df-z 8849 |
This theorem is referenced by: zaddcl 8888 |
Copyright terms: Public domain | W3C validator |