Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zaddcllempos | GIF version |
Description: Lemma for zaddcl 9252. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.) |
Ref | Expression |
---|---|
zaddcllempos | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . . 5 ⊢ (𝑥 = 1 → (𝑀 + 𝑥) = (𝑀 + 1)) | |
2 | 1 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = 1 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 1) ∈ ℤ)) |
3 | 2 | imbi2d 229 | . . 3 ⊢ (𝑥 = 1 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ))) |
4 | oveq2 5861 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑀 + 𝑥) = (𝑀 + 𝑦)) | |
5 | 4 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑦) ∈ ℤ)) |
6 | 5 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ))) |
7 | oveq2 5861 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑀 + 𝑥) = (𝑀 + (𝑦 + 1))) | |
8 | 7 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
9 | 8 | imbi2d 229 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
10 | oveq2 5861 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑀 + 𝑥) = (𝑀 + 𝑁)) | |
11 | 10 | eleq1d 2239 | . . . 4 ⊢ (𝑥 = 𝑁 → ((𝑀 + 𝑥) ∈ ℤ ↔ (𝑀 + 𝑁) ∈ ℤ)) |
12 | 11 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝑁 → ((𝑀 ∈ ℤ → (𝑀 + 𝑥) ∈ ℤ) ↔ (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ))) |
13 | peano2z 9248 | . . 3 ⊢ (𝑀 ∈ ℤ → (𝑀 + 1) ∈ ℤ) | |
14 | peano2z 9248 | . . . . . 6 ⊢ ((𝑀 + 𝑦) ∈ ℤ → ((𝑀 + 𝑦) + 1) ∈ ℤ) | |
15 | zcn 9217 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
16 | 15 | adantl 275 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℂ) |
17 | nncn 8886 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
18 | 17 | adantr 274 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 𝑦 ∈ ℂ) |
19 | 1cnd 7936 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → 1 ∈ ℂ) | |
20 | 16, 18, 19 | addassd 7942 | . . . . . . 7 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) + 1) = (𝑀 + (𝑦 + 1))) |
21 | 20 | eleq1d 2239 | . . . . . 6 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (((𝑀 + 𝑦) + 1) ∈ ℤ ↔ (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
22 | 14, 21 | syl5ib 153 | . . . . 5 ⊢ ((𝑦 ∈ ℕ ∧ 𝑀 ∈ ℤ) → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ)) |
23 | 22 | ex 114 | . . . 4 ⊢ (𝑦 ∈ ℕ → (𝑀 ∈ ℤ → ((𝑀 + 𝑦) ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
24 | 23 | a2d 26 | . . 3 ⊢ (𝑦 ∈ ℕ → ((𝑀 ∈ ℤ → (𝑀 + 𝑦) ∈ ℤ) → (𝑀 ∈ ℤ → (𝑀 + (𝑦 + 1)) ∈ ℤ))) |
25 | 3, 6, 9, 12, 13, 24 | nnind 8894 | . 2 ⊢ (𝑁 ∈ ℕ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 25 | impcom 124 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 (class class class)co 5853 ℂcc 7772 1c1 7775 + caddc 7777 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: zaddcl 9252 |
Copyright terms: Public domain | W3C validator |