Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2zm | Unicode version |
Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
Ref | Expression |
---|---|
peano2zm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 9196 | . . . 4 | |
2 | 1cnd 7915 | . . . 4 | |
3 | 1, 2 | negsubdid 8224 | . . 3 |
4 | znegcl 9222 | . . . 4 | |
5 | peano2z 9227 | . . . 4 | |
6 | 4, 5 | syl 14 | . . 3 |
7 | 3, 6 | eqeltrd 2243 | . 2 |
8 | 1, 2 | subcld 8209 | . . 3 |
9 | znegclb 9224 | . . 3 | |
10 | 8, 9 | syl 14 | . 2 |
11 | 7, 10 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wcel 2136 (class class class)co 5842 cc 7751 c1 7754 caddc 7756 cmin 8069 cneg 8070 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: zaddcllemneg 9230 zlem1lt 9247 zltlem1 9248 zextlt 9283 zeo 9296 eluzp1m1 9489 fz01en 9988 fzsuc2 10014 elfzm11 10026 uzdisj 10028 fzof 10079 fzoval 10083 elfzo 10084 fzodcel 10087 fzon 10101 fzoss2 10107 fzossrbm1 10108 fzosplitsnm1 10144 ubmelm1fzo 10161 elfzom1b 10164 fzosplitprm1 10169 fzoshftral 10173 fzofig 10367 uzsinds 10377 ser3mono 10413 iseqf1olemqcl 10421 iseqf1olemnab 10423 iseqf1olemab 10424 seq3f1olemqsumkj 10433 seq3f1olemqsum 10435 bcm1k 10673 bcn2 10677 bcp1m1 10678 bcpasc 10679 bccl 10680 zfz1isolemiso 10752 seq3coll 10755 resqrexlemcalc3 10958 resqrexlemnm 10960 fsumm1 11357 binomlem 11424 binom1dif 11428 isumsplit 11432 arisum2 11440 pwm1geoserap1 11449 mertenslemi1 11476 fprodm1 11539 fprodeq0 11558 zeo3 11805 oddm1even 11812 oddp1even 11813 zob 11828 nno 11843 isprm3 12050 prmdc 12062 isprm5 12074 phibnd 12149 hashdvds 12153 odzcllem 12174 odzdvds 12177 fldivp1 12278 pockthlem 12286 oddennn 12325 lgslem1 13541 lgsval2lem 13551 2sqlem8 13599 |
Copyright terms: Public domain | W3C validator |