| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2zm | Unicode version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9451 |
. . . 4
| |
| 2 | 1cnd 8162 |
. . . 4
| |
| 3 | 1, 2 | negsubdid 8472 |
. . 3
|
| 4 | znegcl 9477 |
. . . 4
| |
| 5 | peano2z 9482 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | 3, 6 | eqeltrd 2306 |
. 2
|
| 8 | 1, 2 | subcld 8457 |
. . 3
|
| 9 | znegclb 9479 |
. . 3
| |
| 10 | 8, 9 | syl 14 |
. 2
|
| 11 | 7, 10 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 |
| This theorem is referenced by: zaddcllemneg 9485 zlem1lt 9503 zltlem1 9504 zextlt 9539 zeo 9552 eluzp1m1 9746 fz01en 10249 fzsuc2 10275 elfzm11 10287 uzdisj 10289 fzof 10340 fzoval 10344 elfzo 10345 fzodcel 10349 fzon 10363 fzoss2 10370 fzossrbm1 10371 fzosplitsnm1 10415 ubmelm1fzo 10432 elfzom1b 10435 fzosplitprm1 10440 fzoshftral 10444 fzofig 10654 uzsinds 10666 ser3mono 10709 iseqf1olemqcl 10721 iseqf1olemnab 10723 iseqf1olemab 10724 seq3f1olemqsumkj 10733 seq3f1olemqsum 10735 seqf1oglem1 10741 seqf1oglem2 10742 bcm1k 10982 bcn2 10986 bcp1m1 10987 bcpasc 10988 bccl 10989 zfz1isolemiso 11061 seq3coll 11064 wrdred1 11114 wrdred1hash 11115 lswwrd 11118 lsw0 11119 resqrexlemcalc3 11527 resqrexlemnm 11529 fsumm1 11927 binomlem 11994 binom1dif 11998 isumsplit 12002 arisum2 12010 pwm1geoserap1 12019 mertenslemi1 12046 fprodm1 12109 fprodeq0 12128 3dvds 12375 zeo3 12379 oddm1even 12386 oddp1even 12387 zob 12402 nno 12417 bitsfzolem 12465 isprm3 12640 prmdc 12652 isprm5 12664 phibnd 12739 hashdvds 12743 odzcllem 12765 odzdvds 12768 fldivp1 12871 pockthlem 12879 4sqlemffi 12919 4sqleminfi 12920 4sqlem11 12924 4sqlem12 12925 oddennn 12963 znunit 14623 wilthlem1 15654 mersenne 15671 perfectlem1 15673 lgslem1 15679 lgsval2lem 15689 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgsquadlem1 15756 lgsquadlem3 15758 lgsquad2lem1 15760 lgsquad3 15763 2sqlem8 15802 wlk1walkdom 16070 |
| Copyright terms: Public domain | W3C validator |