| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2zm | Unicode version | ||
| Description: "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.) |
| Ref | Expression |
|---|---|
| peano2zm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 9379 |
. . . 4
| |
| 2 | 1cnd 8090 |
. . . 4
| |
| 3 | 1, 2 | negsubdid 8400 |
. . 3
|
| 4 | znegcl 9405 |
. . . 4
| |
| 5 | peano2z 9410 |
. . . 4
| |
| 6 | 4, 5 | syl 14 |
. . 3
|
| 7 | 3, 6 | eqeltrd 2282 |
. 2
|
| 8 | 1, 2 | subcld 8385 |
. . 3
|
| 9 | znegclb 9407 |
. . 3
| |
| 10 | 8, 9 | syl 14 |
. 2
|
| 11 | 7, 10 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 |
| This theorem is referenced by: zaddcllemneg 9413 zlem1lt 9431 zltlem1 9432 zextlt 9467 zeo 9480 eluzp1m1 9674 fz01en 10177 fzsuc2 10203 elfzm11 10215 uzdisj 10217 fzof 10268 fzoval 10272 elfzo 10273 fzodcel 10277 fzon 10291 fzoss2 10298 fzossrbm1 10299 fzosplitsnm1 10340 ubmelm1fzo 10357 elfzom1b 10360 fzosplitprm1 10365 fzoshftral 10369 fzofig 10579 uzsinds 10591 ser3mono 10634 iseqf1olemqcl 10646 iseqf1olemnab 10648 iseqf1olemab 10649 seq3f1olemqsumkj 10658 seq3f1olemqsum 10660 seqf1oglem1 10666 seqf1oglem2 10667 bcm1k 10907 bcn2 10911 bcp1m1 10912 bcpasc 10913 bccl 10914 zfz1isolemiso 10986 seq3coll 10989 wrdred1 11038 wrdred1hash 11039 lswwrd 11042 lsw0 11043 resqrexlemcalc3 11360 resqrexlemnm 11362 fsumm1 11760 binomlem 11827 binom1dif 11831 isumsplit 11835 arisum2 11843 pwm1geoserap1 11852 mertenslemi1 11879 fprodm1 11942 fprodeq0 11961 3dvds 12208 zeo3 12212 oddm1even 12219 oddp1even 12220 zob 12235 nno 12250 bitsfzolem 12298 isprm3 12473 prmdc 12485 isprm5 12497 phibnd 12572 hashdvds 12576 odzcllem 12598 odzdvds 12601 fldivp1 12704 pockthlem 12712 4sqlemffi 12752 4sqleminfi 12753 4sqlem11 12757 4sqlem12 12758 oddennn 12796 znunit 14454 wilthlem1 15485 mersenne 15502 perfectlem1 15504 lgslem1 15510 lgsval2lem 15520 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgsquadlem1 15587 lgsquadlem3 15589 lgsquad2lem1 15591 lgsquad3 15594 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |