ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iedgex GIF version

Theorem iedgex 15785
Description: Applying the indexed edge function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.)
Assertion
Ref Expression
iedgex (𝐺𝑉 → (iEdg‘𝐺) ∈ V)

Proof of Theorem iedgex
StepHypRef Expression
1 iedgvalg 15783 . 2 (𝐺𝑉 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)))
2 2ndexg 6284 . . 3 (𝐺𝑉 → (2nd𝐺) ∈ V)
3 edgfid 15772 . . . . 5 .ef = Slot (.ef‘ndx)
4 edgfndxnn 15774 . . . . 5 (.ef‘ndx) ∈ ℕ
53, 4ndxslid 13023 . . . 4 (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ)
65slotex 13025 . . 3 (𝐺𝑉 → (.ef‘𝐺) ∈ V)
72, 6ifexd 4552 . 2 (𝐺𝑉 → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) ∈ V)
81, 7eqeltrd 2286 1 (𝐺𝑉 → (iEdg‘𝐺) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2180  Vcvv 2779  ifcif 3582   × cxp 4694  cfv 5294  2nd c2nd 6255  ndxcnx 12995  .efcedgf 15770  iEdgciedg 15779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fo 5300  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-2nd 6257  df-sub 8287  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-dec 9547  df-ndx 13001  df-slot 13002  df-edgf 15771  df-iedg 15781
This theorem is referenced by:  isuhgrm  15836  isushgrm  15837  uhgrunop  15852  isupgren  15860  upgrop  15869  isumgren  15870  upgrunop  15890  umgrunop  15892  isuspgren  15920  isusgren  15921  usgrop  15929  usgrausgrien  15932  ausgrumgrien  15933  ausgrusgrien  15934  usgrsizedgen  15976
  Copyright terms: Public domain W3C validator