| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iedgex | GIF version | ||
| Description: Applying the indexed edge function yields a set. (Contributed by Jim Kingdon, 29-Dec-2025.) |
| Ref | Expression |
|---|---|
| iedgex | ⊢ (𝐺 ∈ 𝑉 → (iEdg‘𝐺) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedgvalg 15783 | . 2 ⊢ (𝐺 ∈ 𝑉 → (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺))) | |
| 2 | 2ndexg 6284 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (2nd ‘𝐺) ∈ V) | |
| 3 | edgfid 15772 | . . . . 5 ⊢ .ef = Slot (.ef‘ndx) | |
| 4 | edgfndxnn 15774 | . . . . 5 ⊢ (.ef‘ndx) ∈ ℕ | |
| 5 | 3, 4 | ndxslid 13023 | . . . 4 ⊢ (.ef = Slot (.ef‘ndx) ∧ (.ef‘ndx) ∈ ℕ) |
| 6 | 5 | slotex 13025 | . . 3 ⊢ (𝐺 ∈ 𝑉 → (.ef‘𝐺) ∈ V) |
| 7 | 2, 6 | ifexd 4552 | . 2 ⊢ (𝐺 ∈ 𝑉 → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) ∈ V) |
| 8 | 1, 7 | eqeltrd 2286 | 1 ⊢ (𝐺 ∈ 𝑉 → (iEdg‘𝐺) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2180 Vcvv 2779 ifcif 3582 × cxp 4694 ‘cfv 5294 2nd c2nd 6255 ndxcnx 12995 .efcedgf 15770 iEdgciedg 15779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fo 5300 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-2nd 6257 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-n0 9338 df-dec 9547 df-ndx 13001 df-slot 13002 df-edgf 15771 df-iedg 15781 |
| This theorem is referenced by: isuhgrm 15836 isushgrm 15837 uhgrunop 15852 isupgren 15860 upgrop 15869 isumgren 15870 upgrunop 15890 umgrunop 15892 isuspgren 15920 isusgren 15921 usgrop 15929 usgrausgrien 15932 ausgrumgrien 15933 ausgrusgrien 15934 usgrsizedgen 15976 |
| Copyright terms: Public domain | W3C validator |