Step | Hyp | Ref
| Expression |
1 | | seq3homo.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
2 | | 2fveq3 5501 |
. . . . 5
⊢ (𝑤 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑀))) |
3 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘𝑀)) |
4 | 2, 3 | eqeq12d 2185 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) |
5 | 4 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))) |
6 | | 2fveq3 5501 |
. . . . 5
⊢ (𝑤 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) |
7 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑛 → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘𝑛)) |
8 | 6, 7 | eqeq12d 2185 |
. . . 4
⊢ (𝑤 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) |
9 | 8 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑛 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))) |
10 | | 2fveq3 5501 |
. . . . 5
⊢ (𝑤 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
11 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))) |
12 | 10, 11 | eqeq12d 2185 |
. . . 4
⊢ (𝑤 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) |
13 | 12 | imbi2d 229 |
. . 3
⊢ (𝑤 = (𝑛 + 1) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
14 | | 2fveq3 5501 |
. . . . 5
⊢ (𝑤 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑁))) |
15 | | fveq2 5496 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |
16 | 14, 15 | eqeq12d 2185 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) |
17 | 16 | imbi2d 229 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))) |
18 | | 2fveq3 5501 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘𝑀))) |
19 | | fveq2 5496 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) |
20 | 18, 19 | eqeq12d 2185 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀))) |
21 | | seq3homo.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
22 | 21 | ralrimiva 2543 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
23 | | eluzel2 9492 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
24 | 1, 23 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
25 | | uzid 9501 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
26 | 24, 25 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
27 | 20, 22, 26 | rspcdva 2839 |
. . . . 5
⊢ (𝜑 → (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀)) |
28 | | seq3homo.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
29 | | seq3homo.1 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
30 | 24, 28, 29 | seq3-1 10416 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
31 | 30 | fveq2d 5500 |
. . . . 5
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (𝐻‘(𝐹‘𝑀))) |
32 | | seq3homo.g |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
33 | | seq3homo.qcl |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
34 | 24, 32, 33 | seq3-1 10416 |
. . . . 5
⊢ (𝜑 → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺‘𝑀)) |
35 | 27, 31, 34 | 3eqtr4d 2213 |
. . . 4
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)) |
36 | 35 | a1i 9 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) |
37 | | oveq1 5860 |
. . . . . 6
⊢ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
38 | | simpr 109 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
39 | 28 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
40 | 29 | adantlr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
41 | 38, 39, 40 | seq3p1 10418 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
42 | 41 | fveq2d 5500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
43 | | seq3homo.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
44 | 43 | ralrimivva 2552 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
45 | 44 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
46 | | eqid 2170 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
47 | 46, 24, 28, 29 | seqf 10417 |
. . . . . . . . . . 11
⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
48 | 47 | ffvelrnda 5631 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) |
49 | | fveq2 5496 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
50 | 49 | eleq1d 2239 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
51 | 28 | ralrimiva 2543 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
52 | 51 | adantr 274 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
53 | | peano2uz 9542 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
54 | 38, 53 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
55 | 50, 52, 54 | rspcdva 2839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
56 | | oveq1 5860 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) |
57 | 56 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))) |
58 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘𝑥) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) |
59 | 58 | oveq1d 5868 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦))) |
60 | 57, 59 | eqeq12d 2185 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)))) |
61 | | oveq2 5861 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
62 | 61 | fveq2d 5500 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
63 | | fveq2 5496 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘𝑦) = (𝐻‘(𝐹‘(𝑛 + 1)))) |
64 | 63 | oveq2d 5869 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) |
65 | 62, 64 | eqeq12d 2185 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
66 | 60, 65 | rspc2v 2847 |
. . . . . . . . . 10
⊢
(((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
67 | 48, 55, 66 | syl2anc 409 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
68 | 45, 67 | mpd 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) |
69 | | 2fveq3 5501 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1)))) |
70 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑛 + 1))) |
71 | 69, 70 | eqeq12d 2185 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))) |
72 | 22 | adantr 274 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
73 | 71, 72, 54 | rspcdva 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))) |
74 | 73 | oveq2d 5869 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) |
75 | 42, 68, 74 | 3eqtrd 2207 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) |
76 | 32 | adantlr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
77 | 33 | adantlr 474 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
78 | 38, 76, 77 | seq3p1 10418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
79 | 75, 78 | eqeq12d 2185 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))) |
80 | 37, 79 | syl5ibr 155 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) |
81 | 80 | expcom 115 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
82 | 81 | a2d 26 |
. . 3
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
83 | 5, 9, 13, 17, 36, 82 | uzind4 9547 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) |
84 | 1, 83 | mpcom 36 |
1
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |