| Step | Hyp | Ref
| Expression |
| 1 | | seq3homo.3 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 2 | | 2fveq3 5566 |
. . . . 5
⊢ (𝑤 = 𝑀 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑀))) |
| 3 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = 𝑀 → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘𝑀)) |
| 4 | 2, 3 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑀 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) |
| 5 | 4 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑀 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)))) |
| 6 | | 2fveq3 5566 |
. . . . 5
⊢ (𝑤 = 𝑛 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 7 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = 𝑛 → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘𝑛)) |
| 8 | 6, 7 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑛 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛))) |
| 9 | 8 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑛 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)))) |
| 10 | | 2fveq3 5566 |
. . . . 5
⊢ (𝑤 = (𝑛 + 1) → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1)))) |
| 11 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = (𝑛 + 1) → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))) |
| 12 | 10, 11 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = (𝑛 + 1) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) |
| 13 | 12 | imbi2d 230 |
. . 3
⊢ (𝑤 = (𝑛 + 1) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 14 | | 2fveq3 5566 |
. . . . 5
⊢ (𝑤 = 𝑁 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑁))) |
| 15 | | fveq2 5561 |
. . . . 5
⊢ (𝑤 = 𝑁 → (seq𝑀(𝑄, 𝐺)‘𝑤) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |
| 16 | 14, 15 | eqeq12d 2211 |
. . . 4
⊢ (𝑤 = 𝑁 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤) ↔ (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) |
| 17 | 16 | imbi2d 230 |
. . 3
⊢ (𝑤 = 𝑁 → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑤)) = (seq𝑀(𝑄, 𝐺)‘𝑤)) ↔ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)))) |
| 18 | | 2fveq3 5566 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘𝑀))) |
| 19 | | fveq2 5561 |
. . . . . . 7
⊢ (𝑥 = 𝑀 → (𝐺‘𝑥) = (𝐺‘𝑀)) |
| 20 | 18, 19 | eqeq12d 2211 |
. . . . . 6
⊢ (𝑥 = 𝑀 → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀))) |
| 21 | | seq3homo.5 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
| 22 | 21 | ralrimiva 2570 |
. . . . . 6
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
| 23 | | eluzel2 9623 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 24 | 1, 23 | syl 14 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 25 | | uzid 9632 |
. . . . . . 7
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
| 26 | 24, 25 | syl 14 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 27 | 20, 22, 26 | rspcdva 2873 |
. . . . 5
⊢ (𝜑 → (𝐻‘(𝐹‘𝑀)) = (𝐺‘𝑀)) |
| 28 | | seq3homo.2 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 29 | | seq3homo.1 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 30 | 24, 28, 29 | seq3-1 10571 |
. . . . . 6
⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 31 | 30 | fveq2d 5565 |
. . . . 5
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (𝐻‘(𝐹‘𝑀))) |
| 32 | | seq3homo.g |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 33 | | seq3homo.qcl |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
| 34 | 24, 32, 33 | seq3-1 10571 |
. . . . 5
⊢ (𝜑 → (seq𝑀(𝑄, 𝐺)‘𝑀) = (𝐺‘𝑀)) |
| 35 | 27, 31, 34 | 3eqtr4d 2239 |
. . . 4
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀)) |
| 36 | 35 | a1i 9 |
. . 3
⊢ (𝑀 ∈ ℤ → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑀)) = (seq𝑀(𝑄, 𝐺)‘𝑀))) |
| 37 | | oveq1 5932 |
. . . . . 6
⊢ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
| 38 | | simpr 110 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 39 | 28 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 40 | 29 | adantlr 477 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 41 | 38, 39, 40 | seq3p1 10574 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 42 | 41 | fveq2d 5565 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 43 | | seq3homo.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
| 44 | 43 | ralrimivva 2579 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
| 45 | 44 | adantr 276 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦))) |
| 46 | | eqid 2196 |
. . . . . . . . . . . 12
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
| 47 | 46, 24, 28, 29 | seqf 10573 |
. . . . . . . . . . 11
⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
| 48 | 47 | ffvelcdmda 5700 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆) |
| 49 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑛 + 1) → (𝐹‘𝑥) = (𝐹‘(𝑛 + 1))) |
| 50 | 49 | eleq1d 2265 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
| 51 | 28 | ralrimiva 2570 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ (ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
| 52 | 51 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐹‘𝑥) ∈ 𝑆) |
| 53 | | peano2uz 9674 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 54 | 38, 53 | syl 14 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 55 | 50, 52, 54 | rspcdva 2873 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
| 56 | | oveq1 5932 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) |
| 57 | 56 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘(𝑥 + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦))) |
| 58 | | fveq2 5561 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → (𝐻‘𝑥) = (𝐻‘(seq𝑀( + , 𝐹)‘𝑛))) |
| 59 | 58 | oveq1d 5940 |
. . . . . . . . . . . 12
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦))) |
| 60 | 57, 59 | eqeq12d 2211 |
. . . . . . . . . . 11
⊢ (𝑥 = (seq𝑀( + , 𝐹)‘𝑛) → ((𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)))) |
| 61 | | oveq2 5933 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 62 | 61 | fveq2d 5565 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1))))) |
| 63 | | fveq2 5561 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝐻‘𝑦) = (𝐻‘(𝐹‘(𝑛 + 1)))) |
| 64 | 63 | oveq2d 5941 |
. . . . . . . . . . . 12
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) |
| 65 | 62, 64 | eqeq12d 2211 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + 𝑦)) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘𝑦)) ↔ (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
| 66 | 60, 65 | rspc2v 2881 |
. . . . . . . . . 10
⊢
(((seq𝑀( + , 𝐹)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
| 67 | 48, 55, 66 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝐻‘(𝑥 + 𝑦)) = ((𝐻‘𝑥)𝑄(𝐻‘𝑦)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))))) |
| 68 | 45, 67 | mpd 13 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘((seq𝑀( + , 𝐹)‘𝑛) + (𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1))))) |
| 69 | | 2fveq3 5566 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐻‘(𝐹‘𝑥)) = (𝐻‘(𝐹‘(𝑛 + 1)))) |
| 70 | | fveq2 5561 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑛 + 1) → (𝐺‘𝑥) = (𝐺‘(𝑛 + 1))) |
| 71 | 69, 70 | eqeq12d 2211 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑛 + 1) → ((𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥) ↔ (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1)))) |
| 72 | 22 | adantr 276 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ∀𝑥 ∈
(ℤ≥‘𝑀)(𝐻‘(𝐹‘𝑥)) = (𝐺‘𝑥)) |
| 73 | 71, 72, 54 | rspcdva 2873 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘(𝐹‘(𝑛 + 1))) = (𝐺‘(𝑛 + 1))) |
| 74 | 73 | oveq2d 5941 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐻‘(𝐹‘(𝑛 + 1)))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) |
| 75 | 42, 68, 74 | 3eqtrd 2233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1)))) |
| 76 | 32 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 77 | 33 | adantlr 477 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
| 78 | 38, 76, 77 | seq3p1 10574 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1)))) |
| 79 | 75, 78 | eqeq12d 2211 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)) ↔ ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛))𝑄(𝐺‘(𝑛 + 1))) = ((seq𝑀(𝑄, 𝐺)‘𝑛)𝑄(𝐺‘(𝑛 + 1))))) |
| 80 | 37, 79 | imbitrrid 156 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1)))) |
| 81 | 80 | expcom 116 |
. . . 4
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → (𝜑 → ((𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛) → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 82 | 81 | a2d 26 |
. . 3
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → ((𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑛)) = (seq𝑀(𝑄, 𝐺)‘𝑛)) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘(𝑛 + 1))) = (seq𝑀(𝑄, 𝐺)‘(𝑛 + 1))))) |
| 83 | 5, 9, 13, 17, 36, 82 | uzind4 9679 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁))) |
| 84 | 1, 83 | mpcom 36 |
1
⊢ (𝜑 → (𝐻‘(seq𝑀( + , 𝐹)‘𝑁)) = (seq𝑀(𝑄, 𝐺)‘𝑁)) |