Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs GIF version

Theorem iserabs 11349
 Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 zex 9155 . . . . . . 7 ℤ ∈ V
5 uzssz 9437 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
64, 5ssexi 4098 . . . . . 6 (ℤ𝑀) ∈ V
71, 6eqeltri 2227 . . . . 5 𝑍 ∈ V
87mptex 5686 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
98a1i 9 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
10 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
111, 2, 10serf 10351 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1211ffvelrnda 5595 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
13 simpr 109 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1412abscld 11058 . . . 4 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
15 2fveq3 5466 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
16 eqid 2154 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
1715, 16fvmptg 5537 . . . 4 ((𝑛𝑍 ∧ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1813, 14, 17syl2anc 409 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
191, 3, 9, 2, 12, 18climabs 11194 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
20 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
2118, 14eqeltrd 2231 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
22 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
2310abscld 11058 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2422, 23eqeltrd 2231 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
251, 2, 24serfre 10352 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2625ffvelrnda 5595 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
272adantr 274 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
28 eluzelz 9427 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
2928, 1eleq2s 2249 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
3029adantl 275 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
3127, 30fzfigd 10308 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
32 elfzuz 9902 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2248 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3433, 10sylan2 284 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3534adantlr 469 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3631, 35fsumabs 11339 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) ≤ Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)))
37 eqidd 2155 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
381eleq2i 2221 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
3938biimpi 119 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4039adantl 275 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
411eleq2i 2221 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4241, 10sylan2br 286 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4342adantlr 469 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4437, 40, 43fsum3ser 11271 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑛))
4544fveq2d 5465 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
4622adantlr 469 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4741, 46sylan2br 286 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4823adantlr 469 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
4941, 48sylan2br 286 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5049recnd 7885 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
5147, 40, 50fsum3ser 11271 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)) = (seq𝑀( + , 𝐺)‘𝑛))
5236, 45, 513brtr3d 3991 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
5318, 52eqbrtrd 3982 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
541, 2, 19, 20, 21, 26, 53climle 11208 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   = wceq 1332   ∈ wcel 2125  Vcvv 2709   class class class wbr 3961   ↦ cmpt 4021  ‘cfv 5163  (class class class)co 5814  ℂcc 7709  ℝcr 7710   + caddc 7714   ≤ cle 7892  ℤcz 9146  ℤ≥cuz 9418  ...cfz 9890  seqcseq 10322  abscabs 10874   ⇝ cli 11152  Σcsu 11227 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-nul 4086  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-iinf 4541  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830  ax-caucvg 7831 This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-nul 3391  df-if 3502  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-tr 4059  df-id 4248  df-po 4251  df-iso 4252  df-iord 4321  df-on 4323  df-ilim 4324  df-suc 4326  df-iom 4544  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-isom 5172  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-recs 6242  df-irdg 6307  df-frec 6328  df-1o 6353  df-oadd 6357  df-er 6469  df-en 6675  df-dom 6676  df-fin 6677  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539  df-fz 9891  df-fzo 10020  df-seqfrec 10323  df-exp 10397  df-ihash 10627  df-cj 10719  df-re 10720  df-im 10721  df-rsqrt 10875  df-abs 10876  df-clim 11153  df-sumdc 11228 This theorem is referenced by:  eftlub  11564
 Copyright terms: Public domain W3C validator