ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs GIF version

Theorem iserabs 11467
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 zex 9251 . . . . . . 7 ℤ ∈ V
5 uzssz 9536 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
64, 5ssexi 4138 . . . . . 6 (ℤ𝑀) ∈ V
71, 6eqeltri 2250 . . . . 5 𝑍 ∈ V
87mptex 5738 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
98a1i 9 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
10 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
111, 2, 10serf 10460 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1211ffvelcdmda 5647 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
13 simpr 110 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1412abscld 11174 . . . 4 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
15 2fveq3 5516 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
16 eqid 2177 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
1715, 16fvmptg 5588 . . . 4 ((𝑛𝑍 ∧ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1813, 14, 17syl2anc 411 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
191, 3, 9, 2, 12, 18climabs 11312 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
20 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
2118, 14eqeltrd 2254 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
22 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
2310abscld 11174 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2422, 23eqeltrd 2254 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
251, 2, 24serfre 10461 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2625ffvelcdmda 5647 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
272adantr 276 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
28 eluzelz 9526 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
2928, 1eleq2s 2272 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
3029adantl 277 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
3127, 30fzfigd 10417 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
32 elfzuz 10007 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2271 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3433, 10sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3534adantlr 477 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3631, 35fsumabs 11457 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) ≤ Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)))
37 eqidd 2178 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
381eleq2i 2244 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
3938biimpi 120 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4039adantl 277 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
411eleq2i 2244 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4241, 10sylan2br 288 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4342adantlr 477 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4437, 40, 43fsum3ser 11389 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑛))
4544fveq2d 5515 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
4622adantlr 477 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4741, 46sylan2br 288 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4823adantlr 477 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
4941, 48sylan2br 288 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5049recnd 7976 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
5147, 40, 50fsum3ser 11389 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)) = (seq𝑀( + , 𝐺)‘𝑛))
5236, 45, 513brtr3d 4031 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
5318, 52eqbrtrd 4022 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
541, 2, 19, 20, 21, 26, 53climle 11326 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2737   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  cc 7800  cr 7801   + caddc 7805  cle 7983  cz 9242  cuz 9517  ...cfz 9995  seqcseq 10431  abscabs 10990  cli 11270  Σcsu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  eftlub  11682
  Copyright terms: Public domain W3C validator