ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs GIF version

Theorem iserabs 11621
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 zex 9329 . . . . . . 7 ℤ ∈ V
5 uzssz 9615 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
64, 5ssexi 4168 . . . . . 6 (ℤ𝑀) ∈ V
71, 6eqeltri 2266 . . . . 5 𝑍 ∈ V
87mptex 5785 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
98a1i 9 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
10 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
111, 2, 10serf 10557 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1211ffvelcdmda 5694 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
13 simpr 110 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1412abscld 11328 . . . 4 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
15 2fveq3 5560 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
16 eqid 2193 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
1715, 16fvmptg 5634 . . . 4 ((𝑛𝑍 ∧ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1813, 14, 17syl2anc 411 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
191, 3, 9, 2, 12, 18climabs 11466 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
20 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
2118, 14eqeltrd 2270 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
22 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
2310abscld 11328 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2422, 23eqeltrd 2270 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
251, 2, 24serfre 10558 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2625ffvelcdmda 5694 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
272adantr 276 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
28 eluzelz 9604 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
2928, 1eleq2s 2288 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
3029adantl 277 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
3127, 30fzfigd 10505 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
32 elfzuz 10090 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2287 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3433, 10sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3534adantlr 477 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3631, 35fsumabs 11611 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) ≤ Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)))
37 eqidd 2194 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
381eleq2i 2260 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
3938biimpi 120 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4039adantl 277 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
411eleq2i 2260 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4241, 10sylan2br 288 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4342adantlr 477 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4437, 40, 43fsum3ser 11543 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑛))
4544fveq2d 5559 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
4622adantlr 477 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4741, 46sylan2br 288 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4823adantlr 477 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
4941, 48sylan2br 288 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5049recnd 8050 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
5147, 40, 50fsum3ser 11543 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)) = (seq𝑀( + , 𝐺)‘𝑛))
5236, 45, 513brtr3d 4061 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
5318, 52eqbrtrd 4052 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
541, 2, 19, 20, 21, 26, 53climle 11480 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  Vcvv 2760   class class class wbr 4030  cmpt 4091  cfv 5255  (class class class)co 5919  cc 7872  cr 7873   + caddc 7877  cle 8057  cz 9320  cuz 9595  ...cfz 10077  seqcseq 10521  abscabs 11144  cli 11424  Σcsu 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-frec 6446  df-1o 6471  df-oadd 6475  df-er 6589  df-en 6797  df-dom 6798  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-seqfrec 10522  df-exp 10613  df-ihash 10850  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-clim 11425  df-sumdc 11500
This theorem is referenced by:  eftlub  11836
  Copyright terms: Public domain W3C validator