Step | Hyp | Ref
| Expression |
1 | | iserabs.1 |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | iserabs.5 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
3 | | iserabs.2 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴) |
4 | | zex 9155 |
. . . . . . 7
⊢ ℤ
∈ V |
5 | | uzssz 9437 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
6 | 4, 5 | ssexi 4098 |
. . . . . 6
⊢
(ℤ≥‘𝑀) ∈ V |
7 | 1, 6 | eqeltri 2227 |
. . . . 5
⊢ 𝑍 ∈ V |
8 | 7 | mptex 5686 |
. . . 4
⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V |
9 | 8 | a1i 9 |
. . 3
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V) |
10 | | iserabs.6 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
11 | 1, 2, 10 | serf 10351 |
. . . 4
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
12 | 11 | ffvelrnda 5595 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ) |
13 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ 𝑍) |
14 | 12 | abscld 11058 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) |
15 | | 2fveq3 5466 |
. . . . 5
⊢ (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
16 | | eqid 2154 |
. . . . 5
⊢ (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) |
17 | 15, 16 | fvmptg 5537 |
. . . 4
⊢ ((𝑛 ∈ 𝑍 ∧ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
18 | 13, 14, 17 | syl2anc 409 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
19 | 1, 3, 9, 2, 12, 18 | climabs 11194 |
. 2
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴)) |
20 | | iserabs.3 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵) |
21 | 18, 14 | eqeltrd 2231 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ) |
22 | | iserabs.7 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
23 | 10 | abscld 11058 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
24 | 22, 23 | eqeltrd 2231 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ ℝ) |
25 | 1, 2, 24 | serfre 10352 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ) |
26 | 25 | ffvelrnda 5595 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ) |
27 | 2 | adantr 274 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑀 ∈ ℤ) |
28 | | eluzelz 9427 |
. . . . . . . 8
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
29 | 28, 1 | eleq2s 2249 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ ℤ) |
30 | 29 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ ℤ) |
31 | 27, 30 | fzfigd 10308 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀...𝑛) ∈ Fin) |
32 | | elfzuz 9902 |
. . . . . . . 8
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ≥‘𝑀)) |
33 | 32, 1 | eleqtrrdi 2248 |
. . . . . . 7
⊢ (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ 𝑍) |
34 | 33, 10 | sylan2 284 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
35 | 34 | adantlr 469 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹‘𝑘) ∈ ℂ) |
36 | 31, 35 | fsumabs 11339 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹‘𝑘)) ≤ Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹‘𝑘))) |
37 | | eqidd 2155 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
38 | 1 | eleq2i 2221 |
. . . . . . . 8
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
39 | 38 | biimpi 119 |
. . . . . . 7
⊢ (𝑛 ∈ 𝑍 → 𝑛 ∈ (ℤ≥‘𝑀)) |
40 | 39 | adantl 275 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑛 ∈ (ℤ≥‘𝑀)) |
41 | 1 | eleq2i 2221 |
. . . . . . . 8
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
42 | 41, 10 | sylan2br 286 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
43 | 42 | adantlr 469 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
44 | 37, 40, 43 | fsum3ser 11271 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(𝐹‘𝑘) = (seq𝑀( + , 𝐹)‘𝑛)) |
45 | 44 | fveq2d 5465 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹‘𝑘)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛))) |
46 | 22 | adantlr 469 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
47 | 41, 46 | sylan2br 286 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
48 | 23 | adantlr 469 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
49 | 41, 48 | sylan2br 286 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
50 | 49 | recnd 7885 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (abs‘(𝐹‘𝑘)) ∈ ℂ) |
51 | 47, 40, 50 | fsum3ser 11271 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹‘𝑘)) = (seq𝑀( + , 𝐺)‘𝑛)) |
52 | 36, 45, 51 | 3brtr3d 3991 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
53 | 18, 52 | eqbrtrd 3982 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → ((𝑚 ∈ 𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛)) |
54 | 1, 2, 19, 20, 21, 26, 53 | climle 11208 |
1
⊢ (𝜑 → (abs‘𝐴) ≤ 𝐵) |