ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iserabs GIF version

Theorem iserabs 11524
Description: Generalized triangle inequality: the absolute value of an infinite sum is less than or equal to the sum of absolute values. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Jim Kingdon, 14-Dec-2022.)
Hypotheses
Ref Expression
iserabs.1 𝑍 = (ℤ𝑀)
iserabs.2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
iserabs.3 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
iserabs.5 (𝜑𝑀 ∈ ℤ)
iserabs.6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
iserabs.7 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
iserabs (𝜑 → (abs‘𝐴) ≤ 𝐵)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem iserabs
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iserabs.1 . 2 𝑍 = (ℤ𝑀)
2 iserabs.5 . 2 (𝜑𝑀 ∈ ℤ)
3 iserabs.2 . . 3 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
4 zex 9297 . . . . . . 7 ℤ ∈ V
5 uzssz 9583 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
64, 5ssexi 4159 . . . . . 6 (ℤ𝑀) ∈ V
71, 6eqeltri 2262 . . . . 5 𝑍 ∈ V
87mptex 5766 . . . 4 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V
98a1i 9 . . 3 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ∈ V)
10 iserabs.6 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
111, 2, 10serf 10513 . . . 4 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ)
1211ffvelcdmda 5675 . . 3 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
13 simpr 110 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1412abscld 11231 . . . 4 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ)
15 2fveq3 5542 . . . . 5 (𝑚 = 𝑛 → (abs‘(seq𝑀( + , 𝐹)‘𝑚)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
16 eqid 2189 . . . . 5 (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) = (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))
1715, 16fvmptg 5616 . . . 4 ((𝑛𝑍 ∧ (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ∈ ℝ) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
1813, 14, 17syl2anc 411 . . 3 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
191, 3, 9, 2, 12, 18climabs 11369 . 2 (𝜑 → (𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚))) ⇝ (abs‘𝐴))
20 iserabs.3 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
2118, 14eqeltrd 2266 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ∈ ℝ)
22 iserabs.7 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
2310abscld 11231 . . . . 5 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
2422, 23eqeltrd 2266 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
251, 2, 24serfre 10514 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2625ffvelcdmda 5675 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
272adantr 276 . . . . . 6 ((𝜑𝑛𝑍) → 𝑀 ∈ ℤ)
28 eluzelz 9572 . . . . . . . 8 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
2928, 1eleq2s 2284 . . . . . . 7 (𝑛𝑍𝑛 ∈ ℤ)
3029adantl 277 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ ℤ)
3127, 30fzfigd 10468 . . . . 5 ((𝜑𝑛𝑍) → (𝑀...𝑛) ∈ Fin)
32 elfzuz 10057 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
3332, 1eleqtrrdi 2283 . . . . . . 7 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
3433, 10sylan2 286 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3534adantlr 477 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
3631, 35fsumabs 11514 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) ≤ Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)))
37 eqidd 2190 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = (𝐹𝑘))
381eleq2i 2256 . . . . . . . 8 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
3938biimpi 120 . . . . . . 7 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
4039adantl 277 . . . . . 6 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
411eleq2i 2256 . . . . . . . 8 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
4241, 10sylan2br 288 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4342adantlr 477 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ ℂ)
4437, 40, 43fsum3ser 11446 . . . . 5 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘) = (seq𝑀( + , 𝐹)‘𝑛))
4544fveq2d 5541 . . . 4 ((𝜑𝑛𝑍) → (abs‘Σ𝑘 ∈ (𝑀...𝑛)(𝐹𝑘)) = (abs‘(seq𝑀( + , 𝐹)‘𝑛)))
4622adantlr 477 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4741, 46sylan2br 288 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
4823adantlr 477 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
4941, 48sylan2br 288 . . . . . 6 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℝ)
5049recnd 8021 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (ℤ𝑀)) → (abs‘(𝐹𝑘)) ∈ ℂ)
5147, 40, 50fsum3ser 11446 . . . 4 ((𝜑𝑛𝑍) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐹𝑘)) = (seq𝑀( + , 𝐺)‘𝑛))
5236, 45, 513brtr3d 4052 . . 3 ((𝜑𝑛𝑍) → (abs‘(seq𝑀( + , 𝐹)‘𝑛)) ≤ (seq𝑀( + , 𝐺)‘𝑛))
5318, 52eqbrtrd 4043 . 2 ((𝜑𝑛𝑍) → ((𝑚𝑍 ↦ (abs‘(seq𝑀( + , 𝐹)‘𝑚)))‘𝑛) ≤ (seq𝑀( + , 𝐺)‘𝑛))
541, 2, 19, 20, 21, 26, 53climle 11383 1 (𝜑 → (abs‘𝐴) ≤ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160  Vcvv 2752   class class class wbr 4021  cmpt 4082  cfv 5238  (class class class)co 5900  cc 7844  cr 7845   + caddc 7849  cle 8028  cz 9288  cuz 9563  ...cfz 10044  seqcseq 10484  abscabs 11047  cli 11327  Σcsu 11402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965  ax-caucvg 7966
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-isom 5247  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-irdg 6399  df-frec 6420  df-1o 6445  df-oadd 6449  df-er 6563  df-en 6771  df-dom 6772  df-fin 6773  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-3 9014  df-4 9015  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-fz 10045  df-fzo 10179  df-seqfrec 10485  df-exp 10560  df-ihash 10797  df-cj 10892  df-re 10893  df-im 10894  df-rsqrt 11048  df-abs 11049  df-clim 11328  df-sumdc 11403
This theorem is referenced by:  eftlub  11739
  Copyright terms: Public domain W3C validator