ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alginv GIF version

Theorem alginv 12001
Description: If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
alginv.2 𝐹:𝑆𝑆
alginv.3 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
Assertion
Ref Expression
alginv ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐾(𝑥)

Proof of Theorem alginv
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 5501 . . . . 5 (𝑧 = 0 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)))
21eqeq1d 2179 . . . 4 (𝑧 = 0 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))
32imbi2d 229 . . 3 (𝑧 = 0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))))
4 2fveq3 5501 . . . . 5 (𝑧 = 𝑘 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝑘)))
54eqeq1d 2179 . . . 4 (𝑧 = 𝑘 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
65imbi2d 229 . . 3 (𝑧 = 𝑘 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)))))
7 2fveq3 5501 . . . . 5 (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1))))
87eqeq1d 2179 . . . 4 (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
98imbi2d 229 . . 3 (𝑧 = (𝑘 + 1) → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
10 2fveq3 5501 . . . . 5 (𝑧 = 𝐾 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝐾)))
1110eqeq1d 2179 . . . 4 (𝑧 = 𝐾 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
1211imbi2d 229 . . 3 (𝑧 = 𝐾 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))))
13 eqidd 2171 . . 3 (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))
14 nn0uz 9521 . . . . . . . . . 10 0 = (ℤ‘0)
15 alginv.1 . . . . . . . . . 10 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
16 0zd 9224 . . . . . . . . . 10 (𝐴𝑆 → 0 ∈ ℤ)
17 id 19 . . . . . . . . . 10 (𝐴𝑆𝐴𝑆)
18 alginv.2 . . . . . . . . . . 11 𝐹:𝑆𝑆
1918a1i 9 . . . . . . . . . 10 (𝐴𝑆𝐹:𝑆𝑆)
2014, 15, 16, 17, 19algrp1 12000 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
2120fveq2d 5500 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅𝑘))))
2214, 15, 16, 17, 19algrf 11999 . . . . . . . . . 10 (𝐴𝑆𝑅:ℕ0𝑆)
2322ffvelrnda 5631 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 2fveq3 5501 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹‘(𝑅𝑘))))
25 fveq2 5496 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼𝑥) = (𝐼‘(𝑅𝑘)))
2624, 25eqeq12d 2185 . . . . . . . . . 10 (𝑥 = (𝑅𝑘) → ((𝐼‘(𝐹𝑥)) = (𝐼𝑥) ↔ (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘))))
27 alginv.3 . . . . . . . . . 10 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
2826, 27vtoclga 2796 . . . . . . . . 9 ((𝑅𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
2923, 28syl 14 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
3021, 29eqtrd 2203 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅𝑘)))
3130eqeq1d 2179 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
3231biimprd 157 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
3332expcom 115 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑆 → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
3433a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
353, 6, 9, 12, 13, 34nn0ind 9326 . 2 (𝐾 ∈ ℕ0 → (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
3635impcom 124 1 ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {csn 3583   × cxp 4609  ccom 4615  wf 5194  cfv 5198  (class class class)co 5853  1st c1st 6117  0cc0 7774  1c1 7775   + caddc 7777  0cn0 9135  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  eucalg  12013
  Copyright terms: Public domain W3C validator