| Step | Hyp | Ref
 | Expression | 
| 1 |   | 2fveq3 5563 | 
. . . . 5
⊢ (𝑧 = 0 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) | 
| 2 | 1 | eqeq1d 2205 | 
. . . 4
⊢ (𝑧 = 0 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))) | 
| 3 | 2 | imbi2d 230 | 
. . 3
⊢ (𝑧 = 0 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))) | 
| 4 |   | 2fveq3 5563 | 
. . . . 5
⊢ (𝑧 = 𝑘 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘𝑘))) | 
| 5 | 4 | eqeq1d 2205 | 
. . . 4
⊢ (𝑧 = 𝑘 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)))) | 
| 6 | 5 | imbi2d 230 | 
. . 3
⊢ (𝑧 = 𝑘 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0))))) | 
| 7 |   | 2fveq3 5563 | 
. . . . 5
⊢ (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1)))) | 
| 8 | 7 | eqeq1d 2205 | 
. . . 4
⊢ (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))) | 
| 9 | 8 | imbi2d 230 | 
. . 3
⊢ (𝑧 = (𝑘 + 1) → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) | 
| 10 |   | 2fveq3 5563 | 
. . . . 5
⊢ (𝑧 = 𝐾 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘𝐾))) | 
| 11 | 10 | eqeq1d 2205 | 
. . . 4
⊢ (𝑧 = 𝐾 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0)))) | 
| 12 | 11 | imbi2d 230 | 
. . 3
⊢ (𝑧 = 𝐾 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))))) | 
| 13 |   | eqidd 2197 | 
. . 3
⊢ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))) | 
| 14 |   | nn0uz 9636 | 
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) | 
| 15 |   | alginv.1 | 
. . . . . . . . . 10
⊢ 𝑅 = seq0((𝐹 ∘ 1st ),
(ℕ0 × {𝐴})) | 
| 16 |   | 0zd 9338 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) | 
| 17 |   | id 19 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) | 
| 18 |   | alginv.2 | 
. . . . . . . . . . 11
⊢ 𝐹:𝑆⟶𝑆 | 
| 19 | 18 | a1i 9 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) | 
| 20 | 14, 15, 16, 17, 19 | algrp1 12214 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) | 
| 21 | 20 | fveq2d 5562 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅‘𝑘)))) | 
| 22 | 14, 15, 16, 17, 19 | algrf 12213 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) | 
| 23 | 22 | ffvelcdmda 5697 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) | 
| 24 |   | 2fveq3 5563 | 
. . . . . . . . . . 11
⊢ (𝑥 = (𝑅‘𝑘) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘(𝑅‘𝑘)))) | 
| 25 |   | fveq2 5558 | 
. . . . . . . . . . 11
⊢ (𝑥 = (𝑅‘𝑘) → (𝐼‘𝑥) = (𝐼‘(𝑅‘𝑘))) | 
| 26 | 24, 25 | eqeq12d 2211 | 
. . . . . . . . . 10
⊢ (𝑥 = (𝑅‘𝑘) → ((𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥) ↔ (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘)))) | 
| 27 |   | alginv.3 | 
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥)) | 
| 28 | 26, 27 | vtoclga 2830 | 
. . . . . . . . 9
⊢ ((𝑅‘𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘))) | 
| 29 | 23, 28 | syl 14 | 
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘))) | 
| 30 | 21, 29 | eqtrd 2229 | 
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘𝑘))) | 
| 31 | 30 | eqeq1d 2205 | 
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)))) | 
| 32 | 31 | biimprd 158 | 
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))) | 
| 33 | 32 | expcom 116 | 
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝐴 ∈ 𝑆 → ((𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) | 
| 34 | 33 | a2d 26 | 
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) | 
| 35 | 3, 6, 9, 12, 13, 34 | nn0ind 9440 | 
. 2
⊢ (𝐾 ∈ ℕ0
→ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0)))) | 
| 36 | 35 | impcom 125 | 
1
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ0) → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))) |