ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alginv GIF version

Theorem alginv 12215
Description: If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
alginv.2 𝐹:𝑆𝑆
alginv.3 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
Assertion
Ref Expression
alginv ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐾(𝑥)

Proof of Theorem alginv
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 5563 . . . . 5 (𝑧 = 0 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)))
21eqeq1d 2205 . . . 4 (𝑧 = 0 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))
32imbi2d 230 . . 3 (𝑧 = 0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))))
4 2fveq3 5563 . . . . 5 (𝑧 = 𝑘 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝑘)))
54eqeq1d 2205 . . . 4 (𝑧 = 𝑘 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
65imbi2d 230 . . 3 (𝑧 = 𝑘 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)))))
7 2fveq3 5563 . . . . 5 (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1))))
87eqeq1d 2205 . . . 4 (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
98imbi2d 230 . . 3 (𝑧 = (𝑘 + 1) → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
10 2fveq3 5563 . . . . 5 (𝑧 = 𝐾 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝐾)))
1110eqeq1d 2205 . . . 4 (𝑧 = 𝐾 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
1211imbi2d 230 . . 3 (𝑧 = 𝐾 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))))
13 eqidd 2197 . . 3 (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))
14 nn0uz 9636 . . . . . . . . . 10 0 = (ℤ‘0)
15 alginv.1 . . . . . . . . . 10 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
16 0zd 9338 . . . . . . . . . 10 (𝐴𝑆 → 0 ∈ ℤ)
17 id 19 . . . . . . . . . 10 (𝐴𝑆𝐴𝑆)
18 alginv.2 . . . . . . . . . . 11 𝐹:𝑆𝑆
1918a1i 9 . . . . . . . . . 10 (𝐴𝑆𝐹:𝑆𝑆)
2014, 15, 16, 17, 19algrp1 12214 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
2120fveq2d 5562 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅𝑘))))
2214, 15, 16, 17, 19algrf 12213 . . . . . . . . . 10 (𝐴𝑆𝑅:ℕ0𝑆)
2322ffvelcdmda 5697 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 2fveq3 5563 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹‘(𝑅𝑘))))
25 fveq2 5558 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼𝑥) = (𝐼‘(𝑅𝑘)))
2624, 25eqeq12d 2211 . . . . . . . . . 10 (𝑥 = (𝑅𝑘) → ((𝐼‘(𝐹𝑥)) = (𝐼𝑥) ↔ (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘))))
27 alginv.3 . . . . . . . . . 10 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
2826, 27vtoclga 2830 . . . . . . . . 9 ((𝑅𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
2923, 28syl 14 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
3021, 29eqtrd 2229 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅𝑘)))
3130eqeq1d 2205 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
3231biimprd 158 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
3332expcom 116 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑆 → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
3433a2d 26 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
353, 6, 9, 12, 13, 34nn0ind 9440 . 2 (𝐾 ∈ ℕ0 → (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
3635impcom 125 1 ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  {csn 3622   × cxp 4661  ccom 4667  wf 5254  cfv 5258  (class class class)co 5922  1st c1st 6196  0cc0 7879  1c1 7880   + caddc 7882  0cn0 9249  seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540
This theorem is referenced by:  eucalg  12227
  Copyright terms: Public domain W3C validator