Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nndivides | GIF version |
Description: Definition of the divides relation for positive integers. (Contributed by AV, 26-Jul-2021.) |
Ref | Expression |
---|---|
nndivides | ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nndiv 8898 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝑀 · 𝑛) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ)) | |
2 | nncn 8865 | . . . . . 6 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℂ) | |
3 | 2 | adantl 275 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ) |
4 | nncn 8865 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℂ) | |
5 | 4 | ad2antrr 480 | . . . . 5 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → 𝑀 ∈ ℂ) |
6 | 3, 5 | mulcomd 7920 | . . . 4 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → (𝑛 · 𝑀) = (𝑀 · 𝑛)) |
7 | 6 | eqeq1d 2174 | . . 3 ⊢ (((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ 𝑛 ∈ ℕ) → ((𝑛 · 𝑀) = 𝑁 ↔ (𝑀 · 𝑛) = 𝑁)) |
8 | 7 | rexbidva 2463 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑀 · 𝑛) = 𝑁)) |
9 | nndivdvds 11736 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ)) | |
10 | 9 | ancoms 266 | . 2 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑁 / 𝑀) ∈ ℕ)) |
11 | 1, 8, 10 | 3bitr4rd 220 | 1 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (𝑛 · 𝑀) = 𝑁)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∃wrex 2445 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 · cmul 7758 / cdiv 8568 ℕcn 8857 ∥ cdvds 11727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-n0 9115 df-z 9192 df-dvds 11728 |
This theorem is referenced by: oddprmdvds 12284 |
Copyright terms: Public domain | W3C validator |