| Step | Hyp | Ref
 | Expression | 
| 1 |   | txhmeo.3 | 
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ (𝐽Homeo𝐿)) | 
| 2 |   | hmeocn 14541 | 
. . . . . 6
⊢ (𝐹 ∈ (𝐽Homeo𝐿) → 𝐹 ∈ (𝐽 Cn 𝐿)) | 
| 3 | 1, 2 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐿)) | 
| 4 |   | cntop1 14437 | 
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐿) → 𝐽 ∈ Top) | 
| 5 | 3, 4 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐽 ∈ Top) | 
| 6 |   | txhmeo.1 | 
. . . . 5
⊢ 𝑋 = ∪
𝐽 | 
| 7 | 6 | toptopon 14254 | 
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) | 
| 8 | 5, 7 | sylib 122 | 
. . 3
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 9 |   | txhmeo.4 | 
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (𝐾Homeo𝑀)) | 
| 10 |   | hmeocn 14541 | 
. . . . . 6
⊢ (𝐺 ∈ (𝐾Homeo𝑀) → 𝐺 ∈ (𝐾 Cn 𝑀)) | 
| 11 | 9, 10 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝑀)) | 
| 12 |   | cntop1 14437 | 
. . . . 5
⊢ (𝐺 ∈ (𝐾 Cn 𝑀) → 𝐾 ∈ Top) | 
| 13 | 11, 12 | syl 14 | 
. . . 4
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 14 |   | txhmeo.2 | 
. . . . 5
⊢ 𝑌 = ∪
𝐾 | 
| 15 | 14 | toptopon 14254 | 
. . . 4
⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌)) | 
| 16 | 13, 15 | sylib 122 | 
. . 3
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | 
| 17 | 8, 16 | cnmpt1st 14524 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) | 
| 18 | 8, 16, 17, 3 | cnmpt21f 14528 | 
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐹‘𝑥)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) | 
| 19 | 8, 16 | cnmpt2nd 14525 | 
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) | 
| 20 | 8, 16, 19, 11 | cnmpt21f 14528 | 
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ (𝐺‘𝑦)) ∈ ((𝐽 ×t 𝐾) Cn 𝑀)) | 
| 21 | 8, 16, 18, 20 | cnmpt2t 14529 | 
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀))) | 
| 22 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑥 ∈ V | 
| 23 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑦 ∈ V | 
| 24 | 22, 23 | op1std 6206 | 
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (1st ‘𝑢) = 𝑥) | 
| 25 | 24 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (𝐹‘(1st ‘𝑢)) = (𝐹‘𝑥)) | 
| 26 | 22, 23 | op2ndd 6207 | 
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (2nd ‘𝑢) = 𝑦) | 
| 27 | 26 | fveq2d 5562 | 
. . . . . . . . 9
⊢ (𝑢 = 〈𝑥, 𝑦〉 → (𝐺‘(2nd ‘𝑢)) = (𝐺‘𝑦)) | 
| 28 | 25, 27 | opeq12d 3816 | 
. . . . . . . 8
⊢ (𝑢 = 〈𝑥, 𝑦〉 → 〈(𝐹‘(1st ‘𝑢)), (𝐺‘(2nd ‘𝑢))〉 = 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) | 
| 29 | 28 | mpompt 6014 | 
. . . . . . 7
⊢ (𝑢 ∈ (𝑋 × 𝑌) ↦ 〈(𝐹‘(1st ‘𝑢)), (𝐺‘(2nd ‘𝑢))〉) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) | 
| 30 | 29 | eqcomi 2200 | 
. . . . . 6
⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) = (𝑢 ∈ (𝑋 × 𝑌) ↦ 〈(𝐹‘(1st ‘𝑢)), (𝐺‘(2nd ‘𝑢))〉) | 
| 31 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ ∪ 𝐿 =
∪ 𝐿 | 
| 32 | 6, 31 | cnf 14440 | 
. . . . . . . . 9
⊢ (𝐹 ∈ (𝐽 Cn 𝐿) → 𝐹:𝑋⟶∪ 𝐿) | 
| 33 | 3, 32 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐿) | 
| 34 |   | xp1st 6223 | 
. . . . . . . 8
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (1st ‘𝑢) ∈ 𝑋) | 
| 35 |   | ffvelcdm 5695 | 
. . . . . . . 8
⊢ ((𝐹:𝑋⟶∪ 𝐿 ∧ (1st
‘𝑢) ∈ 𝑋) → (𝐹‘(1st ‘𝑢)) ∈ ∪ 𝐿) | 
| 36 | 33, 34, 35 | syl2an 289 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑋 × 𝑌)) → (𝐹‘(1st ‘𝑢)) ∈ ∪ 𝐿) | 
| 37 |   | eqid 2196 | 
. . . . . . . . . 10
⊢ ∪ 𝑀 =
∪ 𝑀 | 
| 38 | 14, 37 | cnf 14440 | 
. . . . . . . . 9
⊢ (𝐺 ∈ (𝐾 Cn 𝑀) → 𝐺:𝑌⟶∪ 𝑀) | 
| 39 | 11, 38 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝐺:𝑌⟶∪ 𝑀) | 
| 40 |   | xp2nd 6224 | 
. . . . . . . 8
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (2nd ‘𝑢) ∈ 𝑌) | 
| 41 |   | ffvelcdm 5695 | 
. . . . . . . 8
⊢ ((𝐺:𝑌⟶∪ 𝑀 ∧ (2nd
‘𝑢) ∈ 𝑌) → (𝐺‘(2nd ‘𝑢)) ∈ ∪ 𝑀) | 
| 42 | 39, 40, 41 | syl2an 289 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑋 × 𝑌)) → (𝐺‘(2nd ‘𝑢)) ∈ ∪ 𝑀) | 
| 43 | 36, 42 | opelxpd 4696 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑢 ∈ (𝑋 × 𝑌)) → 〈(𝐹‘(1st ‘𝑢)), (𝐺‘(2nd ‘𝑢))〉 ∈ (∪ 𝐿
× ∪ 𝑀)) | 
| 44 | 6, 31 | hmeof1o 14545 | 
. . . . . . . . . 10
⊢ (𝐹 ∈ (𝐽Homeo𝐿) → 𝐹:𝑋–1-1-onto→∪ 𝐿) | 
| 45 | 1, 44 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐹:𝑋–1-1-onto→∪ 𝐿) | 
| 46 |   | f1ocnv 5517 | 
. . . . . . . . 9
⊢ (𝐹:𝑋–1-1-onto→∪ 𝐿
→ ◡𝐹:∪ 𝐿–1-1-onto→𝑋) | 
| 47 |   | f1of 5504 | 
. . . . . . . . 9
⊢ (◡𝐹:∪ 𝐿–1-1-onto→𝑋 → ◡𝐹:∪ 𝐿⟶𝑋) | 
| 48 | 45, 46, 47 | 3syl 17 | 
. . . . . . . 8
⊢ (𝜑 → ◡𝐹:∪ 𝐿⟶𝑋) | 
| 49 |   | xp1st 6223 | 
. . . . . . . 8
⊢ (𝑣 ∈ (∪ 𝐿
× ∪ 𝑀) → (1st ‘𝑣) ∈ ∪ 𝐿) | 
| 50 |   | ffvelcdm 5695 | 
. . . . . . . 8
⊢ ((◡𝐹:∪ 𝐿⟶𝑋 ∧ (1st ‘𝑣) ∈ ∪ 𝐿)
→ (◡𝐹‘(1st ‘𝑣)) ∈ 𝑋) | 
| 51 | 48, 49, 50 | syl2an 289 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀))
→ (◡𝐹‘(1st ‘𝑣)) ∈ 𝑋) | 
| 52 | 14, 37 | hmeof1o 14545 | 
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝐾Homeo𝑀) → 𝐺:𝑌–1-1-onto→∪ 𝑀) | 
| 53 | 9, 52 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐺:𝑌–1-1-onto→∪ 𝑀) | 
| 54 |   | f1ocnv 5517 | 
. . . . . . . . 9
⊢ (𝐺:𝑌–1-1-onto→∪ 𝑀
→ ◡𝐺:∪ 𝑀–1-1-onto→𝑌) | 
| 55 |   | f1of 5504 | 
. . . . . . . . 9
⊢ (◡𝐺:∪ 𝑀–1-1-onto→𝑌 → ◡𝐺:∪ 𝑀⟶𝑌) | 
| 56 | 53, 54, 55 | 3syl 17 | 
. . . . . . . 8
⊢ (𝜑 → ◡𝐺:∪ 𝑀⟶𝑌) | 
| 57 |   | xp2nd 6224 | 
. . . . . . . 8
⊢ (𝑣 ∈ (∪ 𝐿
× ∪ 𝑀) → (2nd ‘𝑣) ∈ ∪ 𝑀) | 
| 58 |   | ffvelcdm 5695 | 
. . . . . . . 8
⊢ ((◡𝐺:∪ 𝑀⟶𝑌 ∧ (2nd ‘𝑣) ∈ ∪ 𝑀)
→ (◡𝐺‘(2nd ‘𝑣)) ∈ 𝑌) | 
| 59 | 56, 57, 58 | syl2an 289 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀))
→ (◡𝐺‘(2nd ‘𝑣)) ∈ 𝑌) | 
| 60 | 51, 59 | opelxpd 4696 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀))
→ 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉 ∈ (𝑋 × 𝑌)) | 
| 61 | 45 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ 𝐹:𝑋–1-1-onto→∪ 𝐿) | 
| 62 | 34 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (1st ‘𝑢) ∈ 𝑋) | 
| 63 | 49 | ad2antll 491 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (1st ‘𝑣) ∈ ∪ 𝐿) | 
| 64 |   | f1ocnvfvb 5827 | 
. . . . . . . . . 10
⊢ ((𝐹:𝑋–1-1-onto→∪ 𝐿
∧ (1st ‘𝑢) ∈ 𝑋 ∧ (1st ‘𝑣) ∈ ∪ 𝐿)
→ ((𝐹‘(1st ‘𝑢)) = (1st
‘𝑣) ↔ (◡𝐹‘(1st ‘𝑣)) = (1st
‘𝑢))) | 
| 65 | 61, 62, 63, 64 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ ((𝐹‘(1st ‘𝑢)) = (1st
‘𝑣) ↔ (◡𝐹‘(1st ‘𝑣)) = (1st
‘𝑢))) | 
| 66 |   | eqcom 2198 | 
. . . . . . . . 9
⊢
((1st ‘𝑣) = (𝐹‘(1st ‘𝑢)) ↔ (𝐹‘(1st ‘𝑢)) = (1st
‘𝑣)) | 
| 67 |   | eqcom 2198 | 
. . . . . . . . 9
⊢
((1st ‘𝑢) = (◡𝐹‘(1st ‘𝑣)) ↔ (◡𝐹‘(1st ‘𝑣)) = (1st
‘𝑢)) | 
| 68 | 65, 66, 67 | 3bitr4g 223 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ ((1st ‘𝑣) = (𝐹‘(1st ‘𝑢)) ↔ (1st
‘𝑢) = (◡𝐹‘(1st ‘𝑣)))) | 
| 69 | 53 | adantr 276 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ 𝐺:𝑌–1-1-onto→∪ 𝑀) | 
| 70 | 40 | ad2antrl 490 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (2nd ‘𝑢) ∈ 𝑌) | 
| 71 | 57 | ad2antll 491 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (2nd ‘𝑣) ∈ ∪ 𝑀) | 
| 72 |   | f1ocnvfvb 5827 | 
. . . . . . . . . 10
⊢ ((𝐺:𝑌–1-1-onto→∪ 𝑀
∧ (2nd ‘𝑢) ∈ 𝑌 ∧ (2nd ‘𝑣) ∈ ∪ 𝑀)
→ ((𝐺‘(2nd ‘𝑢)) = (2nd
‘𝑣) ↔ (◡𝐺‘(2nd ‘𝑣)) = (2nd
‘𝑢))) | 
| 73 | 69, 70, 71, 72 | syl3anc 1249 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ ((𝐺‘(2nd ‘𝑢)) = (2nd
‘𝑣) ↔ (◡𝐺‘(2nd ‘𝑣)) = (2nd
‘𝑢))) | 
| 74 |   | eqcom 2198 | 
. . . . . . . . 9
⊢
((2nd ‘𝑣) = (𝐺‘(2nd ‘𝑢)) ↔ (𝐺‘(2nd ‘𝑢)) = (2nd
‘𝑣)) | 
| 75 |   | eqcom 2198 | 
. . . . . . . . 9
⊢
((2nd ‘𝑢) = (◡𝐺‘(2nd ‘𝑣)) ↔ (◡𝐺‘(2nd ‘𝑣)) = (2nd
‘𝑢)) | 
| 76 | 73, 74, 75 | 3bitr4g 223 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ ((2nd ‘𝑣) = (𝐺‘(2nd ‘𝑢)) ↔ (2nd
‘𝑢) = (◡𝐺‘(2nd ‘𝑣)))) | 
| 77 | 68, 76 | anbi12d 473 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (((1st ‘𝑣) = (𝐹‘(1st ‘𝑢)) ∧ (2nd
‘𝑣) = (𝐺‘(2nd
‘𝑢))) ↔
((1st ‘𝑢)
= (◡𝐹‘(1st ‘𝑣)) ∧ (2nd
‘𝑢) = (◡𝐺‘(2nd ‘𝑣))))) | 
| 78 |   | eqop 6235 | 
. . . . . . . 8
⊢ (𝑣 ∈ (∪ 𝐿
× ∪ 𝑀) → (𝑣 = 〈(𝐹‘(1st ‘𝑢)), (𝐺‘(2nd ‘𝑢))〉 ↔ ((1st
‘𝑣) = (𝐹‘(1st
‘𝑢)) ∧
(2nd ‘𝑣) =
(𝐺‘(2nd
‘𝑢))))) | 
| 79 | 78 | ad2antll 491 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (𝑣 = 〈(𝐹‘(1st
‘𝑢)), (𝐺‘(2nd
‘𝑢))〉 ↔
((1st ‘𝑣)
= (𝐹‘(1st
‘𝑢)) ∧
(2nd ‘𝑣) =
(𝐺‘(2nd
‘𝑢))))) | 
| 80 |   | eqop 6235 | 
. . . . . . . 8
⊢ (𝑢 ∈ (𝑋 × 𝑌) → (𝑢 = 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉 ↔ ((1st
‘𝑢) = (◡𝐹‘(1st ‘𝑣)) ∧ (2nd
‘𝑢) = (◡𝐺‘(2nd ‘𝑣))))) | 
| 81 | 80 | ad2antrl 490 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (𝑢 = 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉 ↔ ((1st
‘𝑢) = (◡𝐹‘(1st ‘𝑣)) ∧ (2nd
‘𝑢) = (◡𝐺‘(2nd ‘𝑣))))) | 
| 82 | 77, 79, 81 | 3bitr4rd 221 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑢 ∈ (𝑋 × 𝑌) ∧ 𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)))
→ (𝑢 = 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉 ↔ 𝑣 = 〈(𝐹‘(1st ‘𝑢)), (𝐺‘(2nd ‘𝑢))〉)) | 
| 83 | 30, 43, 60, 82 | f1ocnv2d 6127 | 
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉):(𝑋 × 𝑌)–1-1-onto→(∪ 𝐿 × ∪ 𝑀)
∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) = (𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)
↦ 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉))) | 
| 84 | 83 | simprd 114 | 
. . . 4
⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) = (𝑣 ∈ (∪ 𝐿 × ∪ 𝑀)
↦ 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉)) | 
| 85 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑧 ∈ V | 
| 86 |   | vex 2766 | 
. . . . . . . 8
⊢ 𝑤 ∈ V | 
| 87 | 85, 86 | op1std 6206 | 
. . . . . . 7
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (1st ‘𝑣) = 𝑧) | 
| 88 | 87 | fveq2d 5562 | 
. . . . . 6
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (◡𝐹‘(1st ‘𝑣)) = (◡𝐹‘𝑧)) | 
| 89 | 85, 86 | op2ndd 6207 | 
. . . . . . 7
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (2nd ‘𝑣) = 𝑤) | 
| 90 | 89 | fveq2d 5562 | 
. . . . . 6
⊢ (𝑣 = 〈𝑧, 𝑤〉 → (◡𝐺‘(2nd ‘𝑣)) = (◡𝐺‘𝑤)) | 
| 91 | 88, 90 | opeq12d 3816 | 
. . . . 5
⊢ (𝑣 = 〈𝑧, 𝑤〉 → 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉 = 〈(◡𝐹‘𝑧), (◡𝐺‘𝑤)〉) | 
| 92 | 91 | mpompt 6014 | 
. . . 4
⊢ (𝑣 ∈ (∪ 𝐿
× ∪ 𝑀) ↦ 〈(◡𝐹‘(1st ‘𝑣)), (◡𝐺‘(2nd ‘𝑣))〉) = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ 〈(◡𝐹‘𝑧), (◡𝐺‘𝑤)〉) | 
| 93 | 84, 92 | eqtrdi 2245 | 
. . 3
⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) = (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ 〈(◡𝐹‘𝑧), (◡𝐺‘𝑤)〉)) | 
| 94 |   | cntop2 14438 | 
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top) | 
| 95 | 3, 94 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝐿 ∈ Top) | 
| 96 | 31 | toptopon 14254 | 
. . . . 5
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) | 
| 97 | 95, 96 | sylib 122 | 
. . . 4
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) | 
| 98 |   | cntop2 14438 | 
. . . . . 6
⊢ (𝐺 ∈ (𝐾 Cn 𝑀) → 𝑀 ∈ Top) | 
| 99 | 11, 98 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ Top) | 
| 100 | 37 | toptopon 14254 | 
. . . . 5
⊢ (𝑀 ∈ Top ↔ 𝑀 ∈ (TopOn‘∪ 𝑀)) | 
| 101 | 99, 100 | sylib 122 | 
. . . 4
⊢ (𝜑 → 𝑀 ∈ (TopOn‘∪ 𝑀)) | 
| 102 | 97, 101 | cnmpt1st 14524 | 
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ 𝑧) ∈ ((𝐿 ×t 𝑀) Cn 𝐿)) | 
| 103 |   | hmeocnvcn 14542 | 
. . . . . 6
⊢ (𝐹 ∈ (𝐽Homeo𝐿) → ◡𝐹 ∈ (𝐿 Cn 𝐽)) | 
| 104 | 1, 103 | syl 14 | 
. . . . 5
⊢ (𝜑 → ◡𝐹 ∈ (𝐿 Cn 𝐽)) | 
| 105 | 97, 101, 102, 104 | cnmpt21f 14528 | 
. . . 4
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (◡𝐹‘𝑧)) ∈ ((𝐿 ×t 𝑀) Cn 𝐽)) | 
| 106 | 97, 101 | cnmpt2nd 14525 | 
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ 𝑤) ∈ ((𝐿 ×t 𝑀) Cn 𝑀)) | 
| 107 |   | hmeocnvcn 14542 | 
. . . . . 6
⊢ (𝐺 ∈ (𝐾Homeo𝑀) → ◡𝐺 ∈ (𝑀 Cn 𝐾)) | 
| 108 | 9, 107 | syl 14 | 
. . . . 5
⊢ (𝜑 → ◡𝐺 ∈ (𝑀 Cn 𝐾)) | 
| 109 | 97, 101, 106, 108 | cnmpt21f 14528 | 
. . . 4
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ (◡𝐺‘𝑤)) ∈ ((𝐿 ×t 𝑀) Cn 𝐾)) | 
| 110 | 97, 101, 105, 109 | cnmpt2t 14529 | 
. . 3
⊢ (𝜑 → (𝑧 ∈ ∪ 𝐿, 𝑤 ∈ ∪ 𝑀 ↦ 〈(◡𝐹‘𝑧), (◡𝐺‘𝑤)〉) ∈ ((𝐿 ×t 𝑀) Cn (𝐽 ×t 𝐾))) | 
| 111 | 93, 110 | eqeltrd 2273 | 
. 2
⊢ (𝜑 → ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐿 ×t 𝑀) Cn (𝐽 ×t 𝐾))) | 
| 112 |   | ishmeo 14540 | 
. 2
⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀)) ↔ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾) Cn (𝐿 ×t 𝑀)) ∧ ◡(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐿 ×t 𝑀) Cn (𝐽 ×t 𝐾)))) | 
| 113 | 21, 111, 112 | sylanbrc 417 | 
1
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑦)〉) ∈ ((𝐽 ×t 𝐾)Homeo(𝐿 ×t 𝑀))) |