ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl GIF version

Theorem caucvgprlemcanl 7704
Description: Lemma for cauappcvgprlemladdrl 7717. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l (𝜑𝐿P)
caucvgprlemcanl.s (𝜑𝑆Q)
caucvgprlemcanl.r (𝜑𝑅Q)
caucvgprlemcanl.q (𝜑𝑄Q)
Assertion
Ref Expression
caucvgprlemcanl (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Distinct variable groups:   𝑄,𝑙,𝑢   𝑅,𝑙,𝑢   𝑆,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem caucvgprlemcanl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7679 . . . 4 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
21adantl 277 . . 3 ((𝜑 ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3 caucvgprlemcanl.r . . . 4 (𝜑𝑅Q)
4 nqprlu 7607 . . . 4 (𝑅Q → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
6 caucvgprlemcanl.l . . . 4 (𝜑𝐿P)
7 caucvgprlemcanl.s . . . . 5 (𝜑𝑆Q)
8 nqprlu 7607 . . . . 5 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
97, 8syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
10 addclpr 7597 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
116, 9, 10syl2anc 411 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
12 caucvgprlemcanl.q . . . 4 (𝜑𝑄Q)
13 nqprlu 7607 . . . 4 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
1412, 13syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
15 addcomprg 7638 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1615adantl 277 . . 3 ((𝜑 ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
172, 5, 11, 14, 16caovord2d 6088 . 2 (𝜑 → (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
18 nqprl 7611 . . 3 ((𝑅Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P) → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
193, 11, 18syl2anc 411 . 2 (𝜑 → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
20 addnqpr 7621 . . . . 5 ((𝑅Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
213, 12, 20syl2anc 411 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
22 addnqpr 7621 . . . . . 6 ((𝑆Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
237, 12, 22syl2anc 411 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
2423oveq2d 5934 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
2521, 24breq12d 4042 . . 3 (𝜑 → (⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
26 addclnq 7435 . . . . 5 ((𝑅Q𝑄Q) → (𝑅 +Q 𝑄) ∈ Q)
273, 12, 26syl2anc 411 . . . 4 (𝜑 → (𝑅 +Q 𝑄) ∈ Q)
28 addclnq 7435 . . . . . . 7 ((𝑆Q𝑄Q) → (𝑆 +Q 𝑄) ∈ Q)
297, 12, 28syl2anc 411 . . . . . 6 (𝜑 → (𝑆 +Q 𝑄) ∈ Q)
30 nqprlu 7607 . . . . . 6 ((𝑆 +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
32 addclpr 7597 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
336, 31, 32syl2anc 411 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
34 nqprl 7611 . . . 4 (((𝑅 +Q 𝑄) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P) → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
3527, 33, 34syl2anc 411 . . 3 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
36 addassprg 7639 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
376, 9, 14, 36syl3anc 1249 . . . 4 (𝜑 → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3837breq2d 4041 . . 3 (𝜑 → ((⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3925, 35, 383bitr4d 220 . 2 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4017, 19, 393bitr4rd 221 1 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  {cab 2179  cop 3621   class class class wbr 4029  cfv 5254  (class class class)co 5918  1st c1st 6191  Qcnq 7340   +Q cplq 7342   <Q cltq 7345  Pcnp 7351   +P cpp 7353  <P cltp 7355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-2o 6470  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-enq0 7484  df-nq0 7485  df-0nq0 7486  df-plq0 7487  df-mq0 7488  df-inp 7526  df-iplp 7528  df-iltp 7530
This theorem is referenced by:  cauappcvgprlemladdrl  7717  caucvgprlemladdrl  7738
  Copyright terms: Public domain W3C validator