ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl GIF version

Theorem caucvgprlemcanl 7645
Description: Lemma for cauappcvgprlemladdrl 7658. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l (𝜑𝐿P)
caucvgprlemcanl.s (𝜑𝑆Q)
caucvgprlemcanl.r (𝜑𝑅Q)
caucvgprlemcanl.q (𝜑𝑄Q)
Assertion
Ref Expression
caucvgprlemcanl (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Distinct variable groups:   𝑄,𝑙,𝑢   𝑅,𝑙,𝑢   𝑆,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem caucvgprlemcanl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7620 . . . 4 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
21adantl 277 . . 3 ((𝜑 ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3 caucvgprlemcanl.r . . . 4 (𝜑𝑅Q)
4 nqprlu 7548 . . . 4 (𝑅Q → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
6 caucvgprlemcanl.l . . . 4 (𝜑𝐿P)
7 caucvgprlemcanl.s . . . . 5 (𝜑𝑆Q)
8 nqprlu 7548 . . . . 5 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
97, 8syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
10 addclpr 7538 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
116, 9, 10syl2anc 411 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
12 caucvgprlemcanl.q . . . 4 (𝜑𝑄Q)
13 nqprlu 7548 . . . 4 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
1412, 13syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
15 addcomprg 7579 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1615adantl 277 . . 3 ((𝜑 ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
172, 5, 11, 14, 16caovord2d 6046 . 2 (𝜑 → (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
18 nqprl 7552 . . 3 ((𝑅Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P) → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
193, 11, 18syl2anc 411 . 2 (𝜑 → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
20 addnqpr 7562 . . . . 5 ((𝑅Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
213, 12, 20syl2anc 411 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
22 addnqpr 7562 . . . . . 6 ((𝑆Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
237, 12, 22syl2anc 411 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
2423oveq2d 5893 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
2521, 24breq12d 4018 . . 3 (𝜑 → (⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
26 addclnq 7376 . . . . 5 ((𝑅Q𝑄Q) → (𝑅 +Q 𝑄) ∈ Q)
273, 12, 26syl2anc 411 . . . 4 (𝜑 → (𝑅 +Q 𝑄) ∈ Q)
28 addclnq 7376 . . . . . . 7 ((𝑆Q𝑄Q) → (𝑆 +Q 𝑄) ∈ Q)
297, 12, 28syl2anc 411 . . . . . 6 (𝜑 → (𝑆 +Q 𝑄) ∈ Q)
30 nqprlu 7548 . . . . . 6 ((𝑆 +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
32 addclpr 7538 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
336, 31, 32syl2anc 411 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
34 nqprl 7552 . . . 4 (((𝑅 +Q 𝑄) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P) → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
3527, 33, 34syl2anc 411 . . 3 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
36 addassprg 7580 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
376, 9, 14, 36syl3anc 1238 . . . 4 (𝜑 → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3837breq2d 4017 . . 3 (𝜑 → ((⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3925, 35, 383bitr4d 220 . 2 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4017, 19, 393bitr4rd 221 1 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  {cab 2163  cop 3597   class class class wbr 4005  cfv 5218  (class class class)co 5877  1st c1st 6141  Qcnq 7281   +Q cplq 7283   <Q cltq 7286  Pcnp 7292   +P cpp 7294  <P cltp 7296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-iplp 7469  df-iltp 7471
This theorem is referenced by:  cauappcvgprlemladdrl  7658  caucvgprlemladdrl  7679
  Copyright terms: Public domain W3C validator