ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemcanl GIF version

Theorem caucvgprlemcanl 7606
Description: Lemma for cauappcvgprlemladdrl 7619. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
Hypotheses
Ref Expression
caucvgprlemcanl.l (𝜑𝐿P)
caucvgprlemcanl.s (𝜑𝑆Q)
caucvgprlemcanl.r (𝜑𝑅Q)
caucvgprlemcanl.q (𝜑𝑄Q)
Assertion
Ref Expression
caucvgprlemcanl (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Distinct variable groups:   𝑄,𝑙,𝑢   𝑅,𝑙,𝑢   𝑆,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝐿(𝑢,𝑙)

Proof of Theorem caucvgprlemcanl
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltaprg 7581 . . . 4 ((𝑓P𝑔PP) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
21adantl 275 . . 3 ((𝜑 ∧ (𝑓P𝑔PP)) → (𝑓<P 𝑔 ↔ ( +P 𝑓)<P ( +P 𝑔)))
3 caucvgprlemcanl.r . . . 4 (𝜑𝑅Q)
4 nqprlu 7509 . . . 4 (𝑅Q → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
53, 4syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ ∈ P)
6 caucvgprlemcanl.l . . . 4 (𝜑𝐿P)
7 caucvgprlemcanl.s . . . . 5 (𝜑𝑆Q)
8 nqprlu 7509 . . . . 5 (𝑆Q → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
97, 8syl 14 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P)
10 addclpr 7499 . . . 4 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
116, 9, 10syl2anc 409 . . 3 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P)
12 caucvgprlemcanl.q . . . 4 (𝜑𝑄Q)
13 nqprlu 7509 . . . 4 (𝑄Q → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
1412, 13syl 14 . . 3 (𝜑 → ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P)
15 addcomprg 7540 . . . 4 ((𝑓P𝑔P) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
1615adantl 275 . . 3 ((𝜑 ∧ (𝑓P𝑔P)) → (𝑓 +P 𝑔) = (𝑔 +P 𝑓))
172, 5, 11, 14, 16caovord2d 6022 . 2 (𝜑 → (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
18 nqprl 7513 . . 3 ((𝑅Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) ∈ P) → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
193, 11, 18syl2anc 409 . 2 (𝜑 → (𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩)))
20 addnqpr 7523 . . . . 5 ((𝑅Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
213, 12, 20syl2anc 409 . . . 4 (𝜑 → ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
22 addnqpr 7523 . . . . . 6 ((𝑆Q𝑄Q) → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
237, 12, 22syl2anc 409 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))
2423oveq2d 5869 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
2521, 24breq12d 4002 . . 3 (𝜑 → (⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
26 addclnq 7337 . . . . 5 ((𝑅Q𝑄Q) → (𝑅 +Q 𝑄) ∈ Q)
273, 12, 26syl2anc 409 . . . 4 (𝜑 → (𝑅 +Q 𝑄) ∈ Q)
28 addclnq 7337 . . . . . . 7 ((𝑆Q𝑄Q) → (𝑆 +Q 𝑄) ∈ Q)
297, 12, 28syl2anc 409 . . . . . 6 (𝜑 → (𝑆 +Q 𝑄) ∈ Q)
30 nqprlu 7509 . . . . . 6 ((𝑆 +Q 𝑄) ∈ Q → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
3129, 30syl 14 . . . . 5 (𝜑 → ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P)
32 addclpr 7499 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩ ∈ P) → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
336, 31, 32syl2anc 409 . . . 4 (𝜑 → (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P)
34 nqprl 7513 . . . 4 (((𝑅 +Q 𝑄) ∈ Q ∧ (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩) ∈ P) → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
3527, 33, 34syl2anc 409 . . 3 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ ⟨{𝑙𝑙 <Q (𝑅 +Q 𝑄)}, {𝑢 ∣ (𝑅 +Q 𝑄) <Q 𝑢}⟩<P (𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)))
36 addassprg 7541 . . . . 5 ((𝐿P ∧ ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩ ∈ P) → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
376, 9, 14, 36syl3anc 1233 . . . 4 (𝜑 → ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) = (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
3837breq2d 4001 . . 3 (𝜑 → ((⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P (𝐿 +P (⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩))))
3925, 35, 383bitr4d 219 . 2 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ (⟨{𝑙𝑙 <Q 𝑅}, {𝑢𝑅 <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)<P ((𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩) +P ⟨{𝑙𝑙 <Q 𝑄}, {𝑢𝑄 <Q 𝑢}⟩)))
4017, 19, 393bitr4rd 220 1 (𝜑 → ((𝑅 +Q 𝑄) ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q (𝑆 +Q 𝑄)}, {𝑢 ∣ (𝑆 +Q 𝑄) <Q 𝑢}⟩)) ↔ 𝑅 ∈ (1st ‘(𝐿 +P ⟨{𝑙𝑙 <Q 𝑆}, {𝑢𝑆 <Q 𝑢}⟩))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  {cab 2156  cop 3586   class class class wbr 3989  cfv 5198  (class class class)co 5853  1st c1st 6117  Qcnq 7242   +Q cplq 7244   <Q cltq 7247  Pcnp 7253   +P cpp 7255  <P cltp 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-iltp 7432
This theorem is referenced by:  cauappcvgprlemladdrl  7619  caucvgprlemladdrl  7640
  Copyright terms: Public domain W3C validator