ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fihashdom GIF version

Theorem fihashdom 11020
Description: Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
Assertion
Ref Expression
fihashdom ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))

Proof of Theorem fihashdom
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6910 . . . 4 (𝐴 ∈ Fin ↔ ∃𝑛 ∈ ω 𝐴𝑛)
21biimpi 120 . . 3 (𝐴 ∈ Fin → ∃𝑛 ∈ ω 𝐴𝑛)
32adantr 276 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ∃𝑛 ∈ ω 𝐴𝑛)
4 isfi 6910 . . . . 5 (𝐵 ∈ Fin ↔ ∃𝑚 ∈ ω 𝐵𝑚)
54biimpi 120 . . . 4 (𝐵 ∈ Fin → ∃𝑚 ∈ ω 𝐵𝑚)
65ad2antlr 489 . . 3 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ∃𝑚 ∈ ω 𝐵𝑚)
7 simplrr 536 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐴𝑛)
8 domen1 6999 . . . . 5 (𝐴𝑛 → (𝐴𝑚𝑛𝑚))
97, 8syl 14 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝑚𝑛𝑚))
10 simprr 531 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝐵𝑚)
11 domen2 7000 . . . . 5 (𝐵𝑚 → (𝐴𝐵𝐴𝑚))
1210, 11syl 14 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝐴𝐵𝐴𝑚))
13 0zd 9454 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 0 ∈ ℤ)
14 eqid 2229 . . . . . 6 frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
15 simplrl 535 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛 ∈ ω)
16 simprl 529 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚 ∈ ω)
1713, 14, 15, 16frec2uzled 10646 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚 ↔ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ≤ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
18 nndomo 7021 . . . . . 6 ((𝑛 ∈ ω ∧ 𝑚 ∈ ω) → (𝑛𝑚𝑛𝑚))
1915, 16, 18syl2anc 411 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (𝑛𝑚𝑛𝑚))
207ensymd 6933 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑛𝐴)
21 hashennn 10997 . . . . . . 7 ((𝑛 ∈ ω ∧ 𝑛𝐴) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
2215, 20, 21syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛))
2310ensymd 6933 . . . . . . 7 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → 𝑚𝐵)
24 hashennn 10997 . . . . . . 7 ((𝑚 ∈ ω ∧ 𝑚𝐵) → (♯‘𝐵) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2516, 23, 24syl2anc 411 . . . . . 6 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → (♯‘𝐵) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚))
2622, 25breq12d 4095 . . . . 5 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑛) ≤ (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)‘𝑚)))
2717, 19, 263bitr4rd 221 . . . 4 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝑛𝑚))
289, 12, 273bitr4rd 221 . . 3 ((((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) ∧ (𝑚 ∈ ω ∧ 𝐵𝑚)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
296, 28rexlimddv 2653 . 2 (((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) ∧ (𝑛 ∈ ω ∧ 𝐴𝑛)) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
303, 29rexlimddv 2653 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) ≤ (♯‘𝐵) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  wss 3197   class class class wbr 4082  cmpt 4144  ωcom 4681  cfv 5317  (class class class)co 6000  freccfrec 6534  cen 6883  cdom 6884  Fincfn 6885  0cc0 7995  1c1 7996   + caddc 7998  cle 8178  cz 9442  chash 10992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-recs 6449  df-frec 6535  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-ihash 10993
This theorem is referenced by:  fihashss  11033  phicl2  12731  phibnd  12734  4sqlem11  12919  znidom  14615  znidomb  14616
  Copyright terms: Public domain W3C validator