ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climabs0 GIF version

Theorem climabs0 11804
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1 𝑍 = (ℤ𝑀)
climabs0.2 (𝜑𝑀 ∈ ℤ)
climabs0.3 (𝜑𝐹𝑉)
climabs0.4 (𝜑𝐺𝑊)
climabs0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climabs0.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
climabs0 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climabs0
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
21uztrn2 9728 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3 climabs0.5 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 absidm 11595 . . . . . . . . 9 ((𝐹𝑘) ∈ ℂ → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
53, 4syl 14 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
65breq1d 4092 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
72, 6sylan2 286 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
87anassrs 400 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
98ralbidva 2526 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
109rexbidva 2527 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
1110ralbidv 2530 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
12 climabs0.2 . . 3 (𝜑𝑀 ∈ ℤ)
13 climabs0.4 . . 3 (𝜑𝐺𝑊)
14 climabs0.6 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
153abscld 11678 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
1615recnd 8163 . . 3 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℂ)
171, 12, 13, 14, 16clim0c 11783 . 2 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥))
18 climabs0.3 . . 3 (𝜑𝐹𝑉)
19 eqidd 2230 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
201, 12, 18, 19, 3clim0c 11783 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
2111, 17, 203bitr4rd 221 1 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wrex 2509   class class class wbr 4082  cfv 5314  cc 7985  0cc0 7987   < clt 8169  cz 9434  cuz 9710  +crp 9837  abscabs 11494  cli 11775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776
This theorem is referenced by:  expcnvap0  11999  expcnv  12001  explecnv  12002
  Copyright terms: Public domain W3C validator