Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > climabs0 | GIF version |
Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.) |
Ref | Expression |
---|---|
climabs0.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climabs0.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climabs0.3 | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
climabs0.4 | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
climabs0.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
climabs0.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) |
Ref | Expression |
---|---|
climabs0 | ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climabs0.1 | . . . . . . . 8 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | 1 | uztrn2 9516 | . . . . . . 7 ⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
3 | climabs0.5 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
4 | absidm 11073 | . . . . . . . . 9 ⊢ ((𝐹‘𝑘) ∈ ℂ → (abs‘(abs‘(𝐹‘𝑘))) = (abs‘(𝐹‘𝑘))) | |
5 | 3, 4 | syl 14 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(abs‘(𝐹‘𝑘))) = (abs‘(𝐹‘𝑘))) |
6 | 5 | breq1d 4008 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
7 | 2, 6 | sylan2 286 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
8 | 7 | anassrs 400 | . . . . 5 ⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ (abs‘(𝐹‘𝑘)) < 𝑥)) |
9 | 8 | ralbidva 2471 | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
10 | 9 | rexbidva 2472 | . . 3 ⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
11 | 10 | ralbidv 2475 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
12 | climabs0.2 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
13 | climabs0.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
14 | climabs0.6 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (abs‘(𝐹‘𝑘))) | |
15 | 3 | abscld 11156 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℝ) |
16 | 15 | recnd 7960 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ∈ ℂ) |
17 | 1, 12, 13, 14, 16 | clim0c 11260 | . 2 ⊢ (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(abs‘(𝐹‘𝑘))) < 𝑥)) |
18 | climabs0.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
19 | eqidd 2176 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
20 | 1, 12, 18, 19, 3 | clim0c 11260 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(abs‘(𝐹‘𝑘)) < 𝑥)) |
21 | 11, 17, 20 | 3bitr4rd 221 | 1 ⊢ (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ∀wral 2453 ∃wrex 2454 class class class wbr 3998 ‘cfv 5208 ℂcc 7784 0cc0 7786 < clt 7966 ℤcz 9224 ℤ≥cuz 9499 ℝ+crp 9622 abscabs 10972 ⇝ cli 11252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8602 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-n0 9148 df-z 9225 df-uz 9500 df-rp 9623 df-seqfrec 10414 df-exp 10488 df-cj 10817 df-re 10818 df-im 10819 df-rsqrt 10973 df-abs 10974 df-clim 11253 |
This theorem is referenced by: expcnvap0 11476 expcnv 11478 explecnv 11479 |
Copyright terms: Public domain | W3C validator |