Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  climabs0 GIF version

Theorem climabs0 11069
 Description: Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
climabs0.1 𝑍 = (ℤ𝑀)
climabs0.2 (𝜑𝑀 ∈ ℤ)
climabs0.3 (𝜑𝐹𝑉)
climabs0.4 (𝜑𝐺𝑊)
climabs0.5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
climabs0.6 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
Assertion
Ref Expression
climabs0 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑍
Allowed substitution hints:   𝑀(𝑘)   𝑉(𝑘)   𝑊(𝑘)

Proof of Theorem climabs0
Dummy variables 𝑗 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climabs0.1 . . . . . . . 8 𝑍 = (ℤ𝑀)
21uztrn2 9336 . . . . . . 7 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
3 climabs0.5 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
4 absidm 10863 . . . . . . . . 9 ((𝐹𝑘) ∈ ℂ → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
53, 4syl 14 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘(abs‘(𝐹𝑘))) = (abs‘(𝐹𝑘)))
65breq1d 3934 . . . . . . 7 ((𝜑𝑘𝑍) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
72, 6sylan2 284 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
87anassrs 397 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ (abs‘(𝐹𝑘)) < 𝑥))
98ralbidva 2431 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
109rexbidva 2432 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
1110ralbidv 2435 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
12 climabs0.2 . . 3 (𝜑𝑀 ∈ ℤ)
13 climabs0.4 . . 3 (𝜑𝐺𝑊)
14 climabs0.6 . . 3 ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))
153abscld 10946 . . . 4 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℝ)
1615recnd 7787 . . 3 ((𝜑𝑘𝑍) → (abs‘(𝐹𝑘)) ∈ ℂ)
171, 12, 13, 14, 16clim0c 11048 . 2 (𝜑 → (𝐺 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(abs‘(𝐹𝑘))) < 𝑥))
18 climabs0.3 . . 3 (𝜑𝐹𝑉)
19 eqidd 2138 . . 3 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
201, 12, 18, 19, 3clim0c 11048 . 2 (𝜑 → (𝐹 ⇝ 0 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑥))
2111, 17, 203bitr4rd 220 1 (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480  ∀wral 2414  ∃wrex 2415   class class class wbr 3924  ‘cfv 5118  ℂcc 7611  0cc0 7613   < clt 7793  ℤcz 9047  ℤ≥cuz 9319  ℝ+crp 9434  abscabs 10762   ⇝ cli 11040 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733 This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-clim 11041 This theorem is referenced by:  expcnvap0  11264  expcnv  11266  explecnv  11267
 Copyright terms: Public domain W3C validator