ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep GIF version

Theorem rebtwn2zlemstep 10188
Description: Lemma for rebtwn2z 10190. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐾

Proof of Theorem rebtwn2zlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 peano2z 9227 . . . . . . . 8 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℤ)
21ad3antlr 485 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) ∈ ℤ)
3 simpr 109 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) < 𝐴)
4 simplrr 526 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
5 simpllr 524 . . . . . . . . . . 11 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℤ)
65zcnd 9314 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℂ)
7 1cnd 7915 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 1 ∈ ℂ)
8 eluzelcn 9477 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℂ)
98ad4antr 486 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐾 ∈ ℂ)
106, 7, 9addassd 7921 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (1 + 𝐾)))
117, 9addcomd 8049 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (1 + 𝐾) = (𝐾 + 1))
1211oveq2d 5858 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + (1 + 𝐾)) = (𝑚 + (𝐾 + 1)))
1310, 12eqtrd 2198 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (𝐾 + 1)))
144, 13breqtrrd 4010 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < ((𝑚 + 1) + 𝐾))
15 breq1 3985 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝑗 < 𝐴 ↔ (𝑚 + 1) < 𝐴))
16 oveq1 5849 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (𝑗 + 𝐾) = ((𝑚 + 1) + 𝐾))
1716breq2d 3994 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 1) + 𝐾)))
1815, 17anbi12d 465 . . . . . . . 8 (𝑗 = (𝑚 + 1) → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))))
1918rspcev 2830 . . . . . . 7 (((𝑚 + 1) ∈ ℤ ∧ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
202, 3, 14, 19syl12anc 1226 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
21 simpllr 524 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
22 simplrl 525 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 < 𝐴)
23 simpr 109 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
24 breq1 3985 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗 < 𝐴𝑚 < 𝐴))
25 oveq1 5849 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
2625breq2d 3994 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
2724, 26anbi12d 465 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))))
2827rspcev 2830 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
2921, 22, 23, 28syl12anc 1226 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
30 1red 7914 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 ∈ ℝ)
31 eluzelre 9476 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
3231ad3antrrr 484 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℝ)
33 simplr 520 . . . . . . . . 9 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
3433zred 9313 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℝ)
35 1z 9217 . . . . . . . . . . 11 1 ∈ ℤ
36 eluzp1l 9490 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(1 + 1))) → 1 < 𝐾)
3735, 36mpan 421 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘(1 + 1)) → 1 < 𝐾)
38 df-2 8916 . . . . . . . . . . 11 2 = (1 + 1)
3938fveq2i 5489 . . . . . . . . . 10 (ℤ‘2) = (ℤ‘(1 + 1))
4037, 39eleq2s 2261 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
4140ad3antrrr 484 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 < 𝐾)
4230, 32, 34, 41ltadd2dd 8320 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) < (𝑚 + 𝐾))
4334, 30readdcld 7928 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) ∈ ℝ)
4434, 32readdcld 7928 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℝ)
45 simpllr 524 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐴 ∈ ℝ)
46 axltwlin 7966 . . . . . . . 8 (((𝑚 + 1) ∈ ℝ ∧ (𝑚 + 𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4743, 44, 45, 46syl3anc 1228 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4842, 47mpd 13 . . . . . 6 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾)))
4920, 29, 48mpjaodan 788 . . . . 5 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 114 . . . 4 (((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) → ((𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2583 . . 3 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
52513impia 1190 . 2 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 3985 . . . 4 (𝑚 = 𝑗 → (𝑚 < 𝐴𝑗 < 𝐴))
54 oveq1 5849 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 3994 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 465 . . 3 (𝑚 = 𝑗 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2693 . 2 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 133 1 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698  w3a 968   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  cr 7752  1c1 7754   + caddc 7756   < clt 7933  2c2 8908  cz 9191  cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  rebtwn2zlemshrink  10189
  Copyright terms: Public domain W3C validator