ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep GIF version

Theorem rebtwn2zlemstep 10324
Description: Lemma for rebtwn2z 10326. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐾

Proof of Theorem rebtwn2zlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 peano2z 9356 . . . . . . . 8 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℤ)
21ad3antlr 493 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) ∈ ℤ)
3 simpr 110 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) < 𝐴)
4 simplrr 536 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
5 simpllr 534 . . . . . . . . . . 11 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℤ)
65zcnd 9443 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℂ)
7 1cnd 8037 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 1 ∈ ℂ)
8 eluzelcn 9606 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℂ)
98ad4antr 494 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐾 ∈ ℂ)
106, 7, 9addassd 8044 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (1 + 𝐾)))
117, 9addcomd 8172 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (1 + 𝐾) = (𝐾 + 1))
1211oveq2d 5935 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + (1 + 𝐾)) = (𝑚 + (𝐾 + 1)))
1310, 12eqtrd 2226 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (𝐾 + 1)))
144, 13breqtrrd 4058 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < ((𝑚 + 1) + 𝐾))
15 breq1 4033 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝑗 < 𝐴 ↔ (𝑚 + 1) < 𝐴))
16 oveq1 5926 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (𝑗 + 𝐾) = ((𝑚 + 1) + 𝐾))
1716breq2d 4042 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 1) + 𝐾)))
1815, 17anbi12d 473 . . . . . . . 8 (𝑗 = (𝑚 + 1) → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))))
1918rspcev 2865 . . . . . . 7 (((𝑚 + 1) ∈ ℤ ∧ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
202, 3, 14, 19syl12anc 1247 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
21 simpllr 534 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
22 simplrl 535 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 < 𝐴)
23 simpr 110 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
24 breq1 4033 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗 < 𝐴𝑚 < 𝐴))
25 oveq1 5926 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
2625breq2d 4042 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
2724, 26anbi12d 473 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))))
2827rspcev 2865 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
2921, 22, 23, 28syl12anc 1247 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
30 1red 8036 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 ∈ ℝ)
31 eluzelre 9605 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
3231ad3antrrr 492 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℝ)
33 simplr 528 . . . . . . . . 9 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
3433zred 9442 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℝ)
35 1z 9346 . . . . . . . . . . 11 1 ∈ ℤ
36 eluzp1l 9620 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(1 + 1))) → 1 < 𝐾)
3735, 36mpan 424 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘(1 + 1)) → 1 < 𝐾)
38 df-2 9043 . . . . . . . . . . 11 2 = (1 + 1)
3938fveq2i 5558 . . . . . . . . . 10 (ℤ‘2) = (ℤ‘(1 + 1))
4037, 39eleq2s 2288 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
4140ad3antrrr 492 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 < 𝐾)
4230, 32, 34, 41ltadd2dd 8443 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) < (𝑚 + 𝐾))
4334, 30readdcld 8051 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) ∈ ℝ)
4434, 32readdcld 8051 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℝ)
45 simpllr 534 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐴 ∈ ℝ)
46 axltwlin 8089 . . . . . . . 8 (((𝑚 + 1) ∈ ℝ ∧ (𝑚 + 𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4743, 44, 45, 46syl3anc 1249 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4842, 47mpd 13 . . . . . 6 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾)))
4920, 29, 48mpjaodan 799 . . . . 5 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 115 . . . 4 (((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) → ((𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2611 . . 3 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
52513impia 1202 . 2 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 4033 . . . 4 (𝑚 = 𝑗 → (𝑚 < 𝐴𝑗 < 𝐴))
54 oveq1 5926 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 4042 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 473 . . 3 (𝑚 = 𝑗 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2727 . 2 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 134 1 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  w3a 980   = wceq 1364  wcel 2164  wrex 2473   class class class wbr 4030  cfv 5255  (class class class)co 5919  cc 7872  cr 7873  1c1 7875   + caddc 7877   < clt 8056  2c2 9035  cz 9320  cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  rebtwn2zlemshrink  10325
  Copyright terms: Public domain W3C validator