ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep GIF version

Theorem rebtwn2zlemstep 9923
Description: Lemma for rebtwn2z 9925. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐾

Proof of Theorem rebtwn2zlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 peano2z 8994 . . . . . . . 8 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℤ)
21ad3antlr 482 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) ∈ ℤ)
3 simpr 109 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) < 𝐴)
4 simplrr 508 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
5 simpllr 506 . . . . . . . . . . 11 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℤ)
65zcnd 9078 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℂ)
7 1cnd 7706 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 1 ∈ ℂ)
8 eluzelcn 9239 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℂ)
98ad4antr 483 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐾 ∈ ℂ)
106, 7, 9addassd 7712 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (1 + 𝐾)))
117, 9addcomd 7836 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (1 + 𝐾) = (𝐾 + 1))
1211oveq2d 5744 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + (1 + 𝐾)) = (𝑚 + (𝐾 + 1)))
1310, 12eqtrd 2147 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (𝐾 + 1)))
144, 13breqtrrd 3921 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < ((𝑚 + 1) + 𝐾))
15 breq1 3898 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝑗 < 𝐴 ↔ (𝑚 + 1) < 𝐴))
16 oveq1 5735 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (𝑗 + 𝐾) = ((𝑚 + 1) + 𝐾))
1716breq2d 3907 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 1) + 𝐾)))
1815, 17anbi12d 462 . . . . . . . 8 (𝑗 = (𝑚 + 1) → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))))
1918rspcev 2760 . . . . . . 7 (((𝑚 + 1) ∈ ℤ ∧ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
202, 3, 14, 19syl12anc 1197 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
21 simpllr 506 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
22 simplrl 507 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 < 𝐴)
23 simpr 109 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
24 breq1 3898 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗 < 𝐴𝑚 < 𝐴))
25 oveq1 5735 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
2625breq2d 3907 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
2724, 26anbi12d 462 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))))
2827rspcev 2760 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
2921, 22, 23, 28syl12anc 1197 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
30 1red 7705 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 ∈ ℝ)
31 eluzelre 9238 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
3231ad3antrrr 481 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℝ)
33 simplr 502 . . . . . . . . 9 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
3433zred 9077 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℝ)
35 1z 8984 . . . . . . . . . . 11 1 ∈ ℤ
36 eluzp1l 9252 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(1 + 1))) → 1 < 𝐾)
3735, 36mpan 418 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘(1 + 1)) → 1 < 𝐾)
38 df-2 8689 . . . . . . . . . . 11 2 = (1 + 1)
3938fveq2i 5378 . . . . . . . . . 10 (ℤ‘2) = (ℤ‘(1 + 1))
4037, 39eleq2s 2209 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
4140ad3antrrr 481 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 < 𝐾)
4230, 32, 34, 41ltadd2dd 8103 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) < (𝑚 + 𝐾))
4334, 30readdcld 7719 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) ∈ ℝ)
4434, 32readdcld 7719 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℝ)
45 simpllr 506 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐴 ∈ ℝ)
46 axltwlin 7756 . . . . . . . 8 (((𝑚 + 1) ∈ ℝ ∧ (𝑚 + 𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4743, 44, 45, 46syl3anc 1199 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4842, 47mpd 13 . . . . . 6 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾)))
4920, 29, 48mpjaodan 770 . . . . 5 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 114 . . . 4 (((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) → ((𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2523 . . 3 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
52513impia 1161 . 2 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 3898 . . . 4 (𝑚 = 𝑗 → (𝑚 < 𝐴𝑗 < 𝐴))
54 oveq1 5735 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 3907 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 462 . . 3 (𝑚 = 𝑗 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2629 . 2 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 133 1 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 680  w3a 945   = wceq 1314  wcel 1463  wrex 2391   class class class wbr 3895  cfv 5081  (class class class)co 5728  cc 7545  cr 7546  1c1 7548   + caddc 7550   < clt 7724  2c2 8681  cz 8958  cuz 9228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-n0 8882  df-z 8959  df-uz 9229
This theorem is referenced by:  rebtwn2zlemshrink  9924
  Copyright terms: Public domain W3C validator