ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rebtwn2zlemstep GIF version

Theorem rebtwn2zlemstep 10239
Description: Lemma for rebtwn2z 10241. Induction step. (Contributed by Jim Kingdon, 13-Oct-2021.)
Assertion
Ref Expression
rebtwn2zlemstep ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Distinct variable groups:   𝐴,𝑚   𝑚,𝐾

Proof of Theorem rebtwn2zlemstep
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 peano2z 9278 . . . . . . . 8 (𝑚 ∈ ℤ → (𝑚 + 1) ∈ ℤ)
21ad3antlr 493 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) ∈ ℤ)
3 simpr 110 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + 1) < 𝐴)
4 simplrr 536 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < (𝑚 + (𝐾 + 1)))
5 simpllr 534 . . . . . . . . . . 11 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℤ)
65zcnd 9365 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝑚 ∈ ℂ)
7 1cnd 7964 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 1 ∈ ℂ)
8 eluzelcn 9528 . . . . . . . . . . 11 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℂ)
98ad4antr 494 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐾 ∈ ℂ)
106, 7, 9addassd 7970 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (1 + 𝐾)))
117, 9addcomd 8098 . . . . . . . . . 10 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (1 + 𝐾) = (𝐾 + 1))
1211oveq2d 5885 . . . . . . . . 9 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → (𝑚 + (1 + 𝐾)) = (𝑚 + (𝐾 + 1)))
1310, 12eqtrd 2210 . . . . . . . 8 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ((𝑚 + 1) + 𝐾) = (𝑚 + (𝐾 + 1)))
144, 13breqtrrd 4028 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → 𝐴 < ((𝑚 + 1) + 𝐾))
15 breq1 4003 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝑗 < 𝐴 ↔ (𝑚 + 1) < 𝐴))
16 oveq1 5876 . . . . . . . . . 10 (𝑗 = (𝑚 + 1) → (𝑗 + 𝐾) = ((𝑚 + 1) + 𝐾))
1716breq2d 4012 . . . . . . . . 9 (𝑗 = (𝑚 + 1) → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < ((𝑚 + 1) + 𝐾)))
1815, 17anbi12d 473 . . . . . . . 8 (𝑗 = (𝑚 + 1) → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))))
1918rspcev 2841 . . . . . . 7 (((𝑚 + 1) ∈ ℤ ∧ ((𝑚 + 1) < 𝐴𝐴 < ((𝑚 + 1) + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
202, 3, 14, 19syl12anc 1236 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ (𝑚 + 1) < 𝐴) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
21 simpllr 534 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 ∈ ℤ)
22 simplrl 535 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝑚 < 𝐴)
23 simpr 110 . . . . . . 7 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → 𝐴 < (𝑚 + 𝐾))
24 breq1 4003 . . . . . . . . 9 (𝑗 = 𝑚 → (𝑗 < 𝐴𝑚 < 𝐴))
25 oveq1 5876 . . . . . . . . . 10 (𝑗 = 𝑚 → (𝑗 + 𝐾) = (𝑚 + 𝐾))
2625breq2d 4012 . . . . . . . . 9 (𝑗 = 𝑚 → (𝐴 < (𝑗 + 𝐾) ↔ 𝐴 < (𝑚 + 𝐾)))
2724, 26anbi12d 473 . . . . . . . 8 (𝑗 = 𝑚 → ((𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)) ↔ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))))
2827rspcev 2841 . . . . . . 7 ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
2921, 22, 23, 28syl12anc 1236 . . . . . 6 (((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) ∧ 𝐴 < (𝑚 + 𝐾)) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
30 1red 7963 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 ∈ ℝ)
31 eluzelre 9527 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 𝐾 ∈ ℝ)
3231ad3antrrr 492 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐾 ∈ ℝ)
33 simplr 528 . . . . . . . . 9 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℤ)
3433zred 9364 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝑚 ∈ ℝ)
35 1z 9268 . . . . . . . . . . 11 1 ∈ ℤ
36 eluzp1l 9541 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝐾 ∈ (ℤ‘(1 + 1))) → 1 < 𝐾)
3735, 36mpan 424 . . . . . . . . . 10 (𝐾 ∈ (ℤ‘(1 + 1)) → 1 < 𝐾)
38 df-2 8967 . . . . . . . . . . 11 2 = (1 + 1)
3938fveq2i 5514 . . . . . . . . . 10 (ℤ‘2) = (ℤ‘(1 + 1))
4037, 39eleq2s 2272 . . . . . . . . 9 (𝐾 ∈ (ℤ‘2) → 1 < 𝐾)
4140ad3antrrr 492 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 1 < 𝐾)
4230, 32, 34, 41ltadd2dd 8369 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) < (𝑚 + 𝐾))
4334, 30readdcld 7977 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 1) ∈ ℝ)
4434, 32readdcld 7977 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → (𝑚 + 𝐾) ∈ ℝ)
45 simpllr 534 . . . . . . . 8 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → 𝐴 ∈ ℝ)
46 axltwlin 8015 . . . . . . . 8 (((𝑚 + 1) ∈ ℝ ∧ (𝑚 + 𝐾) ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4743, 44, 45, 46syl3anc 1238 . . . . . . 7 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < (𝑚 + 𝐾) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾))))
4842, 47mpd 13 . . . . . 6 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ((𝑚 + 1) < 𝐴𝐴 < (𝑚 + 𝐾)))
4920, 29, 48mpjaodan 798 . . . . 5 ((((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) ∧ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5049ex 115 . . . 4 (((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) ∧ 𝑚 ∈ ℤ) → ((𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5150rexlimdva 2594 . . 3 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ) → (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
52513impia 1200 . 2 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
53 breq1 4003 . . . 4 (𝑚 = 𝑗 → (𝑚 < 𝐴𝑗 < 𝐴))
54 oveq1 5876 . . . . 5 (𝑚 = 𝑗 → (𝑚 + 𝐾) = (𝑗 + 𝐾))
5554breq2d 4012 . . . 4 (𝑚 = 𝑗 → (𝐴 < (𝑚 + 𝐾) ↔ 𝐴 < (𝑗 + 𝐾)))
5653, 55anbi12d 473 . . 3 (𝑚 = 𝑗 → ((𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾))))
5756cbvrexv 2704 . 2 (∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)) ↔ ∃𝑗 ∈ ℤ (𝑗 < 𝐴𝐴 < (𝑗 + 𝐾)))
5852, 57sylibr 134 1 ((𝐾 ∈ (ℤ‘2) ∧ 𝐴 ∈ ℝ ∧ ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + (𝐾 + 1)))) → ∃𝑚 ∈ ℤ (𝑚 < 𝐴𝐴 < (𝑚 + 𝐾)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 708  w3a 978   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  1c1 7803   + caddc 7805   < clt 7982  2c2 8959  cz 9242  cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518
This theorem is referenced by:  rebtwn2zlemshrink  10240
  Copyright terms: Public domain W3C validator