| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efsep | GIF version | ||
| Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| efsep.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| efsep.2 | ⊢ 𝑁 = (𝑀 + 1) |
| efsep.3 | ⊢ 𝑀 ∈ ℕ0 |
| efsep.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| efsep.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| efsep.6 | ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) |
| efsep.7 | ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) |
| Ref | Expression |
|---|---|
| efsep | ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efsep.6 | . 2 ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) | |
| 2 | eqid 2206 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 3 | efsep.3 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 4 | 3 | nn0zi 9414 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | eqidd 2207 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 7 | eluznn0 9740 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) | |
| 8 | 3, 7 | mpan 424 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℕ0) |
| 9 | efsep.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 10 | efsep.1 | . . . . . . . . . 10 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 11 | 10 | eftvalcn 12043 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 12 | 9, 11 | sylan 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 13 | eftcl 12040 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
| 14 | 9, 13 | sylan 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 15 | 12, 14 | eqeltrd 2283 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
| 16 | 8, 15 | sylan2 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 17 | 10 | eftlcvg 12073 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 18 | 9, 3, 17 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 19 | 2, 5, 6, 16, 18 | isum1p 11878 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘))) |
| 20 | 10 | eftvalcn 12043 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐹‘𝑀) = ((𝐴↑𝑀) / (!‘𝑀))) |
| 21 | 9, 3, 20 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) = ((𝐴↑𝑀) / (!‘𝑀))) |
| 22 | efsep.2 | . . . . . . . . . 10 ⊢ 𝑁 = (𝑀 + 1) | |
| 23 | 22 | eqcomi 2210 | . . . . . . . . 9 ⊢ (𝑀 + 1) = 𝑁 |
| 24 | 23 | fveq2i 5592 | . . . . . . . 8 ⊢ (ℤ≥‘(𝑀 + 1)) = (ℤ≥‘𝑁) |
| 25 | 24 | sumeq1i 11749 | . . . . . . 7 ⊢ Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘) |
| 26 | 25 | a1i 9 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)) |
| 27 | 21, 26 | oveq12d 5975 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘)) = (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 28 | 19, 27 | eqtrd 2239 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 29 | 28 | oveq2d 5973 | . . 3 ⊢ (𝜑 → (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) = (𝐵 + (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)))) |
| 30 | efsep.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 31 | eftcl 12040 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑𝑀) / (!‘𝑀)) ∈ ℂ) | |
| 32 | 9, 3, 31 | sylancl 413 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑀) / (!‘𝑀)) ∈ ℂ) |
| 33 | peano2nn0 9355 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
| 34 | 3, 33 | ax-mp 5 | . . . . . 6 ⊢ (𝑀 + 1) ∈ ℕ0 |
| 35 | 22, 34 | eqeltri 2279 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 36 | 10 | eftlcl 12074 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘) ∈ ℂ) |
| 37 | 9, 35, 36 | sylancl 413 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘) ∈ ℂ) |
| 38 | 30, 32, 37 | addassd 8115 | . . 3 ⊢ (𝜑 → ((𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)) = (𝐵 + (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)))) |
| 39 | 29, 38 | eqtr4d 2242 | . 2 ⊢ (𝜑 → (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) = ((𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 40 | efsep.7 | . . 3 ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) | |
| 41 | 40 | oveq1d 5972 | . 2 ⊢ (𝜑 → ((𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 42 | 1, 39, 41 | 3eqtrd 2243 | 1 ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ↦ cmpt 4113 dom cdm 4683 ‘cfv 5280 (class class class)co 5957 ℂcc 7943 1c1 7946 + caddc 7948 / cdiv 8765 ℕ0cn0 9315 ℤcz 9392 ℤ≥cuz 9668 seqcseq 10614 ↑cexp 10705 !cfa 10892 ⇝ cli 11664 Σcsu 11739 expce 12028 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-isom 5289 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-frec 6490 df-1o 6515 df-oadd 6519 df-er 6633 df-en 6841 df-dom 6842 df-fin 6843 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-ico 10036 df-fz 10151 df-fzo 10285 df-seqfrec 10615 df-exp 10706 df-fac 10893 df-ihash 10943 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-clim 11665 df-sumdc 11740 |
| This theorem is referenced by: ef4p 12080 dveflem 15273 |
| Copyright terms: Public domain | W3C validator |