| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efsep | GIF version | ||
| Description: Separate out the next term of the power series expansion of the exponential function. The last hypothesis allows the separated terms to be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
| Ref | Expression |
|---|---|
| efsep.1 | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
| efsep.2 | ⊢ 𝑁 = (𝑀 + 1) |
| efsep.3 | ⊢ 𝑀 ∈ ℕ0 |
| efsep.4 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| efsep.5 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| efsep.6 | ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) |
| efsep.7 | ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) |
| Ref | Expression |
|---|---|
| efsep | ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efsep.6 | . 2 ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) | |
| 2 | eqid 2196 | . . . . . 6 ⊢ (ℤ≥‘𝑀) = (ℤ≥‘𝑀) | |
| 3 | efsep.3 | . . . . . . . 8 ⊢ 𝑀 ∈ ℕ0 | |
| 4 | 3 | nn0zi 9351 | . . . . . . 7 ⊢ 𝑀 ∈ ℤ |
| 5 | 4 | a1i 9 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 6 | eqidd 2197 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = (𝐹‘𝑘)) | |
| 7 | eluznn0 9676 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ ℕ0) | |
| 8 | 3, 7 | mpan 424 | . . . . . . 7 ⊢ (𝑘 ∈ (ℤ≥‘𝑀) → 𝑘 ∈ ℕ0) |
| 9 | efsep.4 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 10 | efsep.1 | . . . . . . . . . 10 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | |
| 11 | 10 | eftvalcn 11825 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 12 | 9, 11 | sylan 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
| 13 | eftcl 11822 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | |
| 14 | 9, 13 | sylan 283 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
| 15 | 12, 14 | eqeltrd 2273 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) ∈ ℂ) |
| 16 | 8, 15 | sylan2 286 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ ℂ) |
| 17 | 10 | eftlcvg 11855 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 18 | 9, 3, 17 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
| 19 | 2, 5, 6, 16, 18 | isum1p 11660 | . . . . 5 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘))) |
| 20 | 10 | eftvalcn 11825 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐹‘𝑀) = ((𝐴↑𝑀) / (!‘𝑀))) |
| 21 | 9, 3, 20 | sylancl 413 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑀) = ((𝐴↑𝑀) / (!‘𝑀))) |
| 22 | efsep.2 | . . . . . . . . . 10 ⊢ 𝑁 = (𝑀 + 1) | |
| 23 | 22 | eqcomi 2200 | . . . . . . . . 9 ⊢ (𝑀 + 1) = 𝑁 |
| 24 | 23 | fveq2i 5562 | . . . . . . . 8 ⊢ (ℤ≥‘(𝑀 + 1)) = (ℤ≥‘𝑁) |
| 25 | 24 | sumeq1i 11531 | . . . . . . 7 ⊢ Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘) |
| 26 | 25 | a1i 9 | . . . . . 6 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘) = Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)) |
| 27 | 21, 26 | oveq12d 5941 | . . . . 5 ⊢ (𝜑 → ((𝐹‘𝑀) + Σ𝑘 ∈ (ℤ≥‘(𝑀 + 1))(𝐹‘𝑘)) = (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 28 | 19, 27 | eqtrd 2229 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 29 | 28 | oveq2d 5939 | . . 3 ⊢ (𝜑 → (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) = (𝐵 + (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)))) |
| 30 | efsep.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 31 | eftcl 11822 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → ((𝐴↑𝑀) / (!‘𝑀)) ∈ ℂ) | |
| 32 | 9, 3, 31 | sylancl 413 | . . . 4 ⊢ (𝜑 → ((𝐴↑𝑀) / (!‘𝑀)) ∈ ℂ) |
| 33 | peano2nn0 9292 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ0) | |
| 34 | 3, 33 | ax-mp 5 | . . . . . 6 ⊢ (𝑀 + 1) ∈ ℕ0 |
| 35 | 22, 34 | eqeltri 2269 | . . . . 5 ⊢ 𝑁 ∈ ℕ0 |
| 36 | 10 | eftlcl 11856 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘) ∈ ℂ) |
| 37 | 9, 35, 36 | sylancl 413 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘) ∈ ℂ) |
| 38 | 30, 32, 37 | addassd 8052 | . . 3 ⊢ (𝜑 → ((𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)) = (𝐵 + (((𝐴↑𝑀) / (!‘𝑀)) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)))) |
| 39 | 29, 38 | eqtr4d 2232 | . 2 ⊢ (𝜑 → (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘)) = ((𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 40 | efsep.7 | . . 3 ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) | |
| 41 | 40 | oveq1d 5938 | . 2 ⊢ (𝜑 → ((𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘)) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| 42 | 1, 39, 41 | 3eqtrd 2233 | 1 ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ↦ cmpt 4095 dom cdm 4664 ‘cfv 5259 (class class class)co 5923 ℂcc 7880 1c1 7883 + caddc 7885 / cdiv 8702 ℕ0cn0 9252 ℤcz 9329 ℤ≥cuz 9604 seqcseq 10542 ↑cexp 10633 !cfa 10820 ⇝ cli 11446 Σcsu 11521 expce 11810 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 ax-caucvg 8002 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-isom 5268 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-frec 6451 df-1o 6476 df-oadd 6480 df-er 6594 df-en 6802 df-dom 6803 df-fin 6804 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-2 9052 df-3 9053 df-4 9054 df-n0 9253 df-z 9330 df-uz 9605 df-q 9697 df-rp 9732 df-ico 9972 df-fz 10087 df-fzo 10221 df-seqfrec 10543 df-exp 10634 df-fac 10821 df-ihash 10871 df-cj 11010 df-re 11011 df-im 11012 df-rsqrt 11166 df-abs 11167 df-clim 11447 df-sumdc 11522 |
| This theorem is referenced by: ef4p 11862 dveflem 14988 |
| Copyright terms: Public domain | W3C validator |