ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zpnn0elfzo1 GIF version

Theorem zpnn0elfzo1 10211
Description: Membership of an integer increased by a nonnegative integer in a half- open integer range. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
zpnn0elfzo1 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1))))

Proof of Theorem zpnn0elfzo1
StepHypRef Expression
1 zpnn0elfzo 10210 . 2 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^((𝑍 + 𝑁) + 1)))
2 zcn 9261 . . . . 5 (𝑍 ∈ ℤ → 𝑍 ∈ ℂ)
32adantr 276 . . . 4 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑍 ∈ ℂ)
4 nn0cn 9189 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
54adantl 277 . . . 4 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℂ)
6 1cnd 7976 . . . 4 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 1 ∈ ℂ)
73, 5, 6addassd 7983 . . 3 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝑍 + 𝑁) + 1) = (𝑍 + (𝑁 + 1)))
87oveq2d 5894 . 2 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍..^((𝑍 + 𝑁) + 1)) = (𝑍..^(𝑍 + (𝑁 + 1))))
91, 8eleqtrd 2256 1 ((𝑍 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝑍 + 𝑁) ∈ (𝑍..^(𝑍 + (𝑁 + 1))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  (class class class)co 5878  cc 7812  1c1 7815   + caddc 7817  0cn0 9179  cz 9256  ..^cfzo 10145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-addcom 7914  ax-addass 7916  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-0id 7922  ax-rnegex 7923  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-inn 8923  df-n0 9180  df-z 9257  df-uz 9532  df-fz 10012  df-fzo 10146
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator